93.4k views
4 votes
A baseball is hit along the third base line with a speed of 100 ft/s. At what rate is the balls distance from first base changing when it crosses third base?

User Toldry
by
4.3k points

1 Answer

2 votes

Solution :

From the triangle,


$x^2 = s^2 + 90^2$


$x = √(s^2 + 90^2)$

Now differentiating w.r.t "t", we get


$(dx)/(dt)=(d)/(dt)\left(s^2 +90^2 \right)^(1/2)$


$=(1)/(2)\left(s^2 + 90^2 \right)^{(1)/(2)-1} \cdot 2s \cdot (ds)/(dt)$ [chain rule]


$=(1)/(2)\left(s^2 + 90^2 \right)^{-(1)/(2)} \cdot 2s \cdot (ds)/(dt)$


$=\frac{s}{\left(s^2 + 90^2\right)^{(1)/(2)}} . (ds)/(dt)$

But given that
$(ds)/(dt)$ = 100 ft/s

When all the ball crosses the third base, this means that s = 90. So substituting the value of s and
$(ds)/(dt)$ in
$(dx)/(dt)$ , we get


$(dx)/(dt) = (90)/(\left(90^2 +90^2\right)^(1/2)) * 100$


$(dx)/(dt) = (90)/(√(8100+8100)) * 100$


$(dx)/(dt) = 50\sqrt2$

= 70.710 ft/s

User Ymyzk
by
4.0k points