32.5k views
5 votes
Perimeter the coordinates of the vertices of a quadrilateral are R(-1,3), S(3,3), T(5,-1), and U(-2,-1)

User Mplungjan
by
7.6k points

1 Answer

3 votes

Answer:

The perimeter is equal to
P=(11+2√(5)+√(17))\ units or
P=19.59\ units

Explanation:

we have

The coordinates of the vertices are

R(-1,3), S(3,3), T(5,-1), and U(-2,-1)

plot the figure to better understand the problem

see the attached figure

we know that

The perimeter of a quadrilateral is the sum of its four length sides

so


P=RS+ST+TU+UR

the formula to calculate the distance between two points is equal to


d=\sqrt{(y2-y1)^(2)+(x2-x1)^(2)}

step 1

Find the distance RS


R(-1,3)\\S(3,3)

substitute the values


d=\sqrt{(3-3)^(2)+(3+1)^(2)}


d=\sqrt{(0)^(2)+(4)^(2)}


RS=4\ units

step 2

Find the distance ST


S(3,3)\\T(5,-1)

substitute the values


d=\sqrt{(-1-3)^(2)+(5-3)^(2)}


d=\sqrt{(-4)^(2)+(2)^(2)}


ST=2√(5)\ units

step 3

Find the distance TU


T(5,-1)\\U(-2,-1)

substitute the values


d=\sqrt{(-1+1)^(2)+(-2-5)^(2)}


d=\sqrt{(0)^(2)+(-7)^(2)}


TU=7\ units

step 4

Find the distance UR


U(-2,-1)\\R(-1,3)

substitute the values


d=\sqrt{(3+1)^(2)+(-1+2)^(2)}


d=\sqrt{(4)^(2)+(1)^(2)}


UR=√(17)\ units

step 5

Find the perimeter


P=RS+ST+TU+UR

substitute the values


P=4+2√(5)+7+√(17)


P=(11+2√(5)+√(17))\ units -----> exact value


P=(11+4.47+4.12)=19.59\ units -----> approximate value

Perimeter the coordinates of the vertices of a quadrilateral are R(-1,3), S(3,3), T-example-1
User Shuji
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories