32.5k views
5 votes
Perimeter the coordinates of the vertices of a quadrilateral are R(-1,3), S(3,3), T(5,-1), and U(-2,-1)

User Mplungjan
by
4.7k points

1 Answer

3 votes

Answer:

The perimeter is equal to
P=(11+2√(5)+√(17))\ units or
P=19.59\ units

Explanation:

we have

The coordinates of the vertices are

R(-1,3), S(3,3), T(5,-1), and U(-2,-1)

plot the figure to better understand the problem

see the attached figure

we know that

The perimeter of a quadrilateral is the sum of its four length sides

so


P=RS+ST+TU+UR

the formula to calculate the distance between two points is equal to


d=\sqrt{(y2-y1)^(2)+(x2-x1)^(2)}

step 1

Find the distance RS


R(-1,3)\\S(3,3)

substitute the values


d=\sqrt{(3-3)^(2)+(3+1)^(2)}


d=\sqrt{(0)^(2)+(4)^(2)}


RS=4\ units

step 2

Find the distance ST


S(3,3)\\T(5,-1)

substitute the values


d=\sqrt{(-1-3)^(2)+(5-3)^(2)}


d=\sqrt{(-4)^(2)+(2)^(2)}


ST=2√(5)\ units

step 3

Find the distance TU


T(5,-1)\\U(-2,-1)

substitute the values


d=\sqrt{(-1+1)^(2)+(-2-5)^(2)}


d=\sqrt{(0)^(2)+(-7)^(2)}


TU=7\ units

step 4

Find the distance UR


U(-2,-1)\\R(-1,3)

substitute the values


d=\sqrt{(3+1)^(2)+(-1+2)^(2)}


d=\sqrt{(4)^(2)+(1)^(2)}


UR=√(17)\ units

step 5

Find the perimeter


P=RS+ST+TU+UR

substitute the values


P=4+2√(5)+7+√(17)


P=(11+2√(5)+√(17))\ units -----> exact value


P=(11+4.47+4.12)=19.59\ units -----> approximate value

Perimeter the coordinates of the vertices of a quadrilateral are R(-1,3), S(3,3), T-example-1
User Shuji
by
4.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.