36.1k views
3 votes
Evaluate the summation of 20 times 0.5 to the n minus 1 power, from n equals 3 to 12..

A.) 9.99
B.) 19.95
C.) 29.98
D.) 39.96

User Yichun
by
7.6k points

2 Answers

4 votes
The answer would be B
User Greyfox
by
7.8k points
6 votes

Answer:

option A

Explanation:


\huge\mathcal{Given}\\=>\sum_(n=3)^(12)20.\left((1)/(2)\right)^(n-1)\\=>20\sum_(n=3)^(12)\left((1)/(2)\right)^(n)(1)/(2^(-1))\\=>40\sum_(n=3)^(12)\left((1)/(2)\right)^(n)==>EQ00\\Let\:\:\:S=\sum_(n=3)^(12)\left((1)/(2)\right)^(n)\\S=(1)/(2^3)+(1)/(2^4)+.......+(1)/(2^(11))+(1)/(2^(12))=>>EQ01\\S\:-(1)/(2^(12))=(1)/(2^3)+(1)/(2^4)+.......+(1)/(2^(11))==> EQ02\\</p><p>From\:\:\:EQ01\:\:\:\\S=(1)/(2^3)+(1)/(2)\left((1)/(2^3)+(1)/(2^4)+.......+(1)/(2^(11))\right)\\From\:\:EQ02\:\:\\S=(1)/(2^3)+(1)/(2)\left(S\:-(1)/(2^(12))\right)\\S\:-(S)/(2)=(1)/(2^3)-(1)/(2^(13))\\S=(1)/(2^2)-(1)/(2^(12))\\Substitute\:\:\:in\:\:\:EQ00\:\:we\:\:get\\=>40.\left((1)/(2^2)-(1)/(2^(12))\right)\approx9.990234375.

Hope you understand, if you've any doubts comment below ;))

User Manuel Ceron
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories