Answer:
New angular speed changes from 16 rpm to 19.95 rpm
Step-by-step explanation:
In the given system the angular momentum of the system is conserved
initial angular momentum of the system
![L_(i)=I_(1)\omega _(1)\\\\\omega _(1)=(8\pi )/(15)rad/sec\\\\I_(1)=(1)/(2)mr^(2)+(m_(1)+m_(2)+m_(3))r^(2)\\\\I_(1)=(1)/(2)* 105* 1.8^(2)+(33+28+28) * 1.8^(2)=458.46kgm^(2)\\\\\therefore L_(i)=458.46* (8\pi )/(15)=768.16](https://img.qammunity.org/2020/formulas/physics/college/m8k1ni60ym532x0lmzs1amulqdjcnhasba.png)
When 28 kg child moves to the center the moment of inertia changes thus we have
![I_(2)=(1)/(2)mr^(2)+(m_(1)+m_(2))r^(2)\\\\I_(1)=(1)/(2)* 105* 1.8^(2)+(33+28) * 1.8^(2)=367.74kgm^(2)\\\\\therefore L_(f)=367.74* \omega _(f)](https://img.qammunity.org/2020/formulas/physics/college/wmpvadc62be3p63so0f2bq7kd6etr3dhnk.png)
Equating initial and final angular momentum we get
![I_(2)=(1)/(2)mr^(2)+(m_(1)+m_(2))r^(2)\\\\I_(1)=(1)/(2)* 105* 1.8^(2)+(33+28) * 1.8^(2)=367.74kgm^(2)\\\\\therefore L_(f)=367.74* \omega _(f)\\\\\omega _(f)=(768.16)/(367.74)=2.1rad/sec\\\\N_(2)=19.95rpm](https://img.qammunity.org/2020/formulas/physics/college/fjgbl386elswlx07ndx5fcxgc1ap6hlgfl.png)