Answer:
3.9%
Explanation:
The formula for compound interest to apply is;
![A=P(1+(r)/(n) )^(nt)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/50x0ieoo6jfvqpr5cf29hjveiuux7xz5uu.png)
where;
A=amount at the end
P=starting amount/principal
n=number of compounding years
t=total number of years
r=interest rate expressed as a decimal
Given
P=$4200, n=2, t=4 and A=$4900 R=?
Substitute values in equation, take r=r
![A=P(1+(r)/(n) )^(nt) \\\\\\4900=4200(1+(r)/(2) )^(2*4) \\\\\\4900=4200(1+0.5r)^8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gt06b3ejlq19hx1znwggz2059mxf3jctjy.png)
Divide both sides by 4200
![(4900)/(4200) =(4200)/(4200) (1+0.5r)^8\\\\\\1.1667=(1+0.5r)^8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6qybqhmavnxuxgttahkaz5cux14qborpfb.png)
Introduce root 8 to the left hand side, thus eliminating the power 8 in the right hand side
![\sqrt[8]{1.1667} =1+0.5r\\\\\\1.0195=1+0.5r\\\\\\1.0195-1=0.5r\\\\\\0.0195=0.5r\\\\\\(0.0195)/(0.5) =(0.5r)/(0.5) \\\\\\0.039=r](https://img.qammunity.org/2020/formulas/mathematics/middle-school/m3h2nq7vny4a0uh5g6i1b881m58ir03ap1.png)
r=3.9%