Step-by-step explanation:
It is given that,
Initial temperature,
![T_1=25^(\circ)C=298\ K](https://img.qammunity.org/2020/formulas/physics/college/981ycdmkftpfeorgw72754eccpwcro4bba.png)
Pressure,
![P_1=100\ kPa=10^5\ Pa](https://img.qammunity.org/2020/formulas/physics/college/qf8rmssioh8ch2byw95qm59meku6nkf7vl.png)
Compression ratio,
![r=(V_1)/(V_2)=9.058](https://img.qammunity.org/2020/formulas/physics/college/3e9c2j9hzoss3c5h20knjlxwbi42q93a1q.png)
Let T₂ is the final temperature of air. Using the relation for reversible adiabatic process as :
............(1)
Where,
![\gamma=(C_p)/(C_v)](https://img.qammunity.org/2020/formulas/physics/college/re8lqw5p1glzl49p0hl3n681vfvgv0bp9v.png)
For air,
and
![C_v=0.717](https://img.qammunity.org/2020/formulas/physics/college/odvmmo0k6omp04a2lqs5c20dyf16jyxk79.png)
![\gamma=1.4](https://img.qammunity.org/2020/formulas/physics/college/6hxrhlfzlnsmlgi9u8vyyps9gdka0p4cc4.png)
So, equation (1) becomes :
![T_2=T_1* ((V_1)/(V_2))^(\gamma-1)](https://img.qammunity.org/2020/formulas/physics/college/we5bea81jcq86iil4kjqsmm5u8baow07wc.png)
![T_2=298* (9.058)^(1.4-1)](https://img.qammunity.org/2020/formulas/physics/college/mb1tcl8dfzop5zlb91oik28bcmhc42abhn.png)
![T_2=719.49\ K](https://img.qammunity.org/2020/formulas/physics/college/8hpabfv0p60t8pci4g6u9v31lfens2cov3.png)
So, the final temperature of air is 719.49 K. Hence, this is the required solution.