153k views
24 votes
Exact value of tan 5pi/12

1 Answer

6 votes

Answer:


\displaystyle \tan(5\pi)/(12)=2+√(3)

Explanation:

Tangent Half Angle

Given an angle θ, then:


\displaystyle \tan {\frac {\theta }{2}}=\frac {\sin \theta }{1+\cos \theta}

We are required to find:


\tan(5\pi)/(12)

But it cannot be found in tables of main angles. We can use the angle


\theta = (5\pi)/(6)

And use the formula above to find the required operation. Hence:


\displaystyle \tan(5\pi)/(12)=\tan((5\pi)/(6))/(2)


\displaystyle \tan(5\pi)/(12)=\frac {\sin (5\pi)/(6) }{1+\cos (5\pi)/(6)}


\displaystyle \tan(5\pi)/(12)=\frac {(1)/(2) }{1-(√(3))/(2)}

Operating:


\displaystyle \tan(5\pi)/(12)=\frac {(1)/(2) }{(2-√(3))/(2)}

Simplifying:


\displaystyle \tan(5\pi)/(12)=(1)/(2-√(3))

Rationalizing:


\displaystyle \tan(5\pi)/(12)=(1)/(2-√(3))\cdot (2+√(3))/(2+√(3))


\displaystyle \tan(5\pi)/(12)=(2+√(3))/(2^2-√(3)^2)


\displaystyle \tan(5\pi)/(12)=(2+√(3))/(4-3)

Finally:


\boxed{\displaystyle \tan(5\pi)/(12)=2+√(3)}

User Abhishake Gupta
by
3.6k points