153k views
24 votes
Exact value of tan 5pi/12

1 Answer

6 votes

Answer:


\displaystyle \tan(5\pi)/(12)=2+√(3)

Explanation:

Tangent Half Angle

Given an angle θ, then:


\displaystyle \tan {\frac {\theta }{2}}=\frac {\sin \theta }{1+\cos \theta}

We are required to find:


\tan(5\pi)/(12)

But it cannot be found in tables of main angles. We can use the angle


\theta = (5\pi)/(6)

And use the formula above to find the required operation. Hence:


\displaystyle \tan(5\pi)/(12)=\tan((5\pi)/(6))/(2)


\displaystyle \tan(5\pi)/(12)=\frac {\sin (5\pi)/(6) }{1+\cos (5\pi)/(6)}


\displaystyle \tan(5\pi)/(12)=\frac {(1)/(2) }{1-(√(3))/(2)}

Operating:


\displaystyle \tan(5\pi)/(12)=\frac {(1)/(2) }{(2-√(3))/(2)}

Simplifying:


\displaystyle \tan(5\pi)/(12)=(1)/(2-√(3))

Rationalizing:


\displaystyle \tan(5\pi)/(12)=(1)/(2-√(3))\cdot (2+√(3))/(2+√(3))


\displaystyle \tan(5\pi)/(12)=(2+√(3))/(2^2-√(3)^2)


\displaystyle \tan(5\pi)/(12)=(2+√(3))/(4-3)

Finally:


\boxed{\displaystyle \tan(5\pi)/(12)=2+√(3)}

User Abhishake Gupta
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories