Answer:
Confidence interval :
to
![24.493](https://img.qammunity.org/2020/formulas/mathematics/college/5yxgkn7nhwm5f1gn1zsm4auxtylwa01uhn.png)
Explanation:
A quality analyst selects twenty racquets and obtains the following lengths:
21, 25, 23, 22, 24, 21, 25, 21, 23, 26, 21, 24, 22, 24, 23, 21, 21, 26, 23, 24
So, sample size = n =20
Now we are supposed to find Construct a 99.9% confidence interval for the mean length of all the junior's tennis racquets manufactured at this plant.
Since n < 30
So we will use t-distribution
Confidence level = 99.9%
Significance level = α = 0.001
Now calculate the sample mean
X=21, 25, 23, 22, 24, 21, 25, 21, 23, 26, 21, 24, 22, 24, 23, 21, 21, 26, 23, 24
Sample mean =
![\bar{x}=(\sum x)/(n)](https://img.qammunity.org/2020/formulas/mathematics/college/aueurxnly94ulu5q5chs4sgpkmsbe4dy3p.png)
Sample mean =
![\bar{x}=(21+25+23+22+24+21+25+21+23+ 26+ 21+24+22+ 24+23+21+ 21+ 26+23+ 24)/(20)](https://img.qammunity.org/2020/formulas/mathematics/college/lkz7dparpb2u7vtakvfwnj114sbzad48bm.png)
Sample mean =
![\bar{x}=23](https://img.qammunity.org/2020/formulas/mathematics/college/5s7xe0e5fmpmerbfo8pl2jw0mu6d2bwi5u.png)
Sample standard deviation =
![\sqrt{\frac{\sum(x-\bar{x})^2}{n-1}}](https://img.qammunity.org/2020/formulas/mathematics/college/hd0nz3dbi64wv38aph3zmd820cawse8vpm.png)
Sample standard deviation =
![\sqrt{((21-23)^2+(25-23)^2+(23-23)^2+(22-23)^2+(24-23)^2+(21-23)^2+(25-23)^2+(21-23)^2+(23-23)^2+(26-23)^2+(21-23)^2+(24-23)^2+(22-23)^2+(24-23)^2+(23-23)^2+(21-23)^2+(21-23)^2+(26-23)^2+(23-23)^2+(24-23)^2)/(20-1)}]()
Sample standard deviation= s =
![1.72](https://img.qammunity.org/2020/formulas/mathematics/college/6uq5h1p2qhysofvhfexehmzt5ip8m5bqkf.png)
Degree of freedom = n-1 = 20-1 -19
Critical value of t using the t-distribution table
= 3.883
Formula of confidence interval :
![\bar{x} \pm t_{(\alpha)/(2)} * (s)/(√(n))](https://img.qammunity.org/2020/formulas/mathematics/college/rxzf4upfk0vi7n1q6gm2sjp5d4ffr0mxpc.png)
Substitute the values in the formula
Confidence interval :
![23 \pm 1.73 * (1.72)/(√(20))](https://img.qammunity.org/2020/formulas/mathematics/college/waudmts8u3ar57tpw46zmaawpx8gidbml6.png)
Confidence interval :
to
![23 + 3.883 * (1.72)/(√(20))](https://img.qammunity.org/2020/formulas/mathematics/college/qvarl5ykex4jb3itfcknz87tn0b4cii1cb.png)
Confidence interval :
to
![24.493](https://img.qammunity.org/2020/formulas/mathematics/college/5yxgkn7nhwm5f1gn1zsm4auxtylwa01uhn.png)
Hence Confidence interval :
to
![24.493](https://img.qammunity.org/2020/formulas/mathematics/college/5yxgkn7nhwm5f1gn1zsm4auxtylwa01uhn.png)