Answer:
1)
![k=11.319kN/m](https://img.qammunity.org/2020/formulas/physics/college/gluitbh7t1cd49rhkksx9fxm7l3bgxoafs.png)
2)displacement
![=13.02cm](https://img.qammunity.org/2020/formulas/physics/college/4ai3djpuwynb0m64m7cccgp0ffzwalo88e.png)
3)
![k_(eq)=5.65kN/m](https://img.qammunity.org/2020/formulas/physics/college/6wmmfprw3li0rihmapn64724wneue7ln1y.png)
Step-by-step explanation:
At equilibrium position the weight of the man should be balanced by force in the spring
thus we have at equilibrium
![kx=mg\\\\k=(mg)/(x)](https://img.qammunity.org/2020/formulas/physics/college/fp7w8l8jm7wwo2w66rl5negzzb22uc2zt7.png)
Applying values we get
![k=(75* 9.81)/(0.065)\\\\k=11.319kN/m](https://img.qammunity.org/2020/formulas/physics/college/t6yaatzqbdkn181i8cjbfzfy56m2cnllzt.png)
2)
When we add another identical spring we get an equivalent spring with spring constant as
![(1)/(k_(eq))=(1)/(k_1)+(1)/(k_2)](https://img.qammunity.org/2020/formulas/physics/college/e74eaxy1l1e30slonpz1adivnuw0fmwogb.png)
Applying values we get
![(1)/(k_(eq))=(1)/(11.319)+(1)/(11.319)\\\\k_(eq)=5.65kN/m](https://img.qammunity.org/2020/formulas/physics/college/qkmezy04sqp47fgcspls7mr4nxs5k3nmvs.png)
Thus at equilibrium we have
![x_(2)k_(eq)=mg\\\\x_(2)=(mg)/(k_(eq))\\\\x_(2)=(75* 9.81)/(5.65)* 10^(-3)=13.02cm](https://img.qammunity.org/2020/formulas/physics/college/dhqd70uy122fzuyxm3brtnjl21pt4zku94.png)
3) Equivalent spring constant will be as calculated earlier
![k_(eq)=5.65kN/m](https://img.qammunity.org/2020/formulas/physics/college/6wmmfprw3li0rihmapn64724wneue7ln1y.png)