Answer:
The constant torque required to stop the disk is 8.6 N-m in clockwise direction .
Step-by-step explanation:
Let counterclockwise be positive direction and clockwise be negative direction .
Given
Radius of disk , r = 1.33 m
Mass of disc , m = 70.6 kg
Initial angular velocity ,
![\omega_i =217 rpm](https://img.qammunity.org/2020/formulas/physics/college/lw39o5b91a8pzmvjaxj08pqky8qsjxvf6u.png)
Final angular velocity ,
![\omega_f =0\, rpm](https://img.qammunity.org/2020/formulas/physics/college/mty8lfluz469vcxxyoqnne9rmjpjsh5f4t.png)
Time taken to stop , t = 2.75 min
Let
be the angular acceleration
We know
![\omega _f=\omega _i+\alpha t](https://img.qammunity.org/2020/formulas/physics/college/3mp2fa1m0qvbmtbx4scyhvo8302jz722ks.png)
=>
![0=217+2.75\alpha =>\alpha = -78.9(rev)/(min^(2))](https://img.qammunity.org/2020/formulas/physics/college/r8d28i11awlwtxuai0fxia9xewbxm8twsh.png)
=>
![\alpha =-(78.9* 2\pi)/(60* 60)(rad)/(s^(2))=-0.138 (rad)/(s^(2))](https://img.qammunity.org/2020/formulas/physics/college/aw1911r4c2b4830hzlf8x11kdrcum6spau.png)
Torque required to stop is given by
![\tau =I\alpha](https://img.qammunity.org/2020/formulas/physics/college/dv0jvdx9g3x93lol5yyvoue7d0849dqw0t.png)
where moment of inertia ,
=>
![\therefore \tau =-0.138* 62.5\, N.m=-8.6\, N.m](https://img.qammunity.org/2020/formulas/physics/college/rkq371okibbw7rwcdyl61vvdt89n8ew3v5.png)
Thus the constant torque required to stop the disk is 8.6 N-m in clockwise direction .