162k views
2 votes
Suppose that W1, W2, and W3 are independent uniform random variables with the following distributions: Wi ~ Uni(0,10*i). What is the standard deviation of W1+W2+W3? Using R, compute this value. Round the answer to 2 decimal places and enter into the box:

User Pnj
by
4.6k points

1 Answer

7 votes

I'll leave the computation via R to you. The
W_i are distributed uniformly on the intervals
[0,10i], so that


f_(W_i)(w)=\begin{cases}\frac1{10i}&\text{for }0\le w\le10i\\\\0&\text{otherwise}\end{cases}

each with mean/expectation


E[W_i]=\displaystyle\int_(-\infty)^\infty wf_(W_i)(w)\,\mathrm dw=\int_0^(10i)\frac w{10i}\,\mathrm dw=5i

and variance


\mathrm{Var}[W_i]=E[(W_i-E[W_i])^2]=E[{W_i}^2]-E[W_i]^2

We have


E[{W_i}^2]=\displaystyle\int_(-\infty)^\infty w^2f_(W_i)(w)\,\mathrm dw=\int_0^(10i)(w^2)/(10i)\,\mathrm dw=\frac{100i^2}3

so that


\mathrm{Var}[W_i]=\frac{25i^2}3

Now,


E[W_1+W_2+W_3]=E[W_1]+E[W_2]+E[W_3]=5+10+15=30

and


\mathrm{Var}[W_1+W_2+W_3]=E\left[\big((W_1+W_2+W_3)-E[W_1+W_2+W_3]\big)^2\right]


\mathrm{Var}[W_1+W_2+W_3]=E[(W_1+W_2+W_3)^2]-E[W_1+W_2+W_3]^2

We have


(W_1+W_2+W_3)^2={W_1}^2+{W_2}^2+{W_3}^2+2(W_1W_2+W_1W_3+W_2W_3)


E[(W_1+W_2+W_3)^2]


=E[{W_1}^2]+E[{W_2}^2]+E[{W_3}^2]+2(E[W_1]E[W_2]+E[W_1]E[W_3]+E[W_2]E[W_3])

because
W_i and
W_j are independent when
i\\eq j, and so


E[(W_1+W_2+W_3)^2]=\frac{100}3+\frac{400}3+300+2(50+75+150)=\frac{3050}3

giving a variance of


\mathrm{Var}[W_1+W_2+W_3]=\frac{3050}3-30^2=\frac{350}3

and so the standard deviation is
\sqrt{\frac{350}3}\approx\boxed{116.67}

# # #

A faster way, assuming you know the variance of a linear combination of independent random variables, is to compute


\mathrm{Var}[W_1+W_2+W_3]


=\mathrm{Var}[W_1]+\mathrm{Var}[W_2]+\mathrm{Var}[W_3]+2(\mathrm{Cov}[W_1,W_2]+\mathrm{Cov}[W_1,W_3]+\mathrm{Cov}[W_2,W_3])

and since the
W_i are independent, each covariance is 0. Then


\mathrm{Var}[W_1+W_2+W_3]=\mathrm{Var}[W_1]+\mathrm{Var}[W_2]+\mathrm{Var}[W_3]


\mathrm{Var}[W_1+W_2+W_3]=\frac{25}3+\frac{100}3+75=\frac{350}3

and take the square root to get the standard deviation.

User Arled
by
5.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.