162k views
2 votes
Suppose that W1, W2, and W3 are independent uniform random variables with the following distributions: Wi ~ Uni(0,10*i). What is the standard deviation of W1+W2+W3? Using R, compute this value. Round the answer to 2 decimal places and enter into the box:

User Pnj
by
6.7k points

1 Answer

7 votes

I'll leave the computation via R to you. The
W_i are distributed uniformly on the intervals
[0,10i], so that


f_(W_i)(w)=\begin{cases}\frac1{10i}&\text{for }0\le w\le10i\\\\0&\text{otherwise}\end{cases}

each with mean/expectation


E[W_i]=\displaystyle\int_(-\infty)^\infty wf_(W_i)(w)\,\mathrm dw=\int_0^(10i)\frac w{10i}\,\mathrm dw=5i

and variance


\mathrm{Var}[W_i]=E[(W_i-E[W_i])^2]=E[{W_i}^2]-E[W_i]^2

We have


E[{W_i}^2]=\displaystyle\int_(-\infty)^\infty w^2f_(W_i)(w)\,\mathrm dw=\int_0^(10i)(w^2)/(10i)\,\mathrm dw=\frac{100i^2}3

so that


\mathrm{Var}[W_i]=\frac{25i^2}3

Now,


E[W_1+W_2+W_3]=E[W_1]+E[W_2]+E[W_3]=5+10+15=30

and


\mathrm{Var}[W_1+W_2+W_3]=E\left[\big((W_1+W_2+W_3)-E[W_1+W_2+W_3]\big)^2\right]


\mathrm{Var}[W_1+W_2+W_3]=E[(W_1+W_2+W_3)^2]-E[W_1+W_2+W_3]^2

We have


(W_1+W_2+W_3)^2={W_1}^2+{W_2}^2+{W_3}^2+2(W_1W_2+W_1W_3+W_2W_3)


E[(W_1+W_2+W_3)^2]


=E[{W_1}^2]+E[{W_2}^2]+E[{W_3}^2]+2(E[W_1]E[W_2]+E[W_1]E[W_3]+E[W_2]E[W_3])

because
W_i and
W_j are independent when
i\\eq j, and so


E[(W_1+W_2+W_3)^2]=\frac{100}3+\frac{400}3+300+2(50+75+150)=\frac{3050}3

giving a variance of


\mathrm{Var}[W_1+W_2+W_3]=\frac{3050}3-30^2=\frac{350}3

and so the standard deviation is
\sqrt{\frac{350}3}\approx\boxed{116.67}

# # #

A faster way, assuming you know the variance of a linear combination of independent random variables, is to compute


\mathrm{Var}[W_1+W_2+W_3]


=\mathrm{Var}[W_1]+\mathrm{Var}[W_2]+\mathrm{Var}[W_3]+2(\mathrm{Cov}[W_1,W_2]+\mathrm{Cov}[W_1,W_3]+\mathrm{Cov}[W_2,W_3])

and since the
W_i are independent, each covariance is 0. Then


\mathrm{Var}[W_1+W_2+W_3]=\mathrm{Var}[W_1]+\mathrm{Var}[W_2]+\mathrm{Var}[W_3]


\mathrm{Var}[W_1+W_2+W_3]=\frac{25}3+\frac{100}3+75=\frac{350}3

and take the square root to get the standard deviation.

User Arled
by
7.5k points