Answer: 0.9996
Explanation:
Given : The monthly electrical utility bills of all customers for the Far East Power and Light Company are known to be normally distributed with a mean
![\mu=$\ 87.00](https://img.qammunity.org/2020/formulas/mathematics/college/huoojnr3wl18fnpb7djfcdu5vf85adtpbf.png)
Standard deviation :
![\sigma=$\ 36.00](https://img.qammunity.org/2020/formulas/mathematics/college/8ekb8y0udckonsapdv1ew1lpcwxe2debar.png)
Sample size : n=100
Let X be the random variable that represents the electricity utility bill for a randomly selected month .
z-score :
![z=(X-\mu)/((\sigma)/(√(n)))](https://img.qammunity.org/2020/formulas/mathematics/college/o4jdrm5tct238z6b24ipkyyykw4bkw6fe2.png)
For X = $75.00
![z=(75.00-87.00)/((36)/(√(100)))\approx-3.33](https://img.qammunity.org/2020/formulas/mathematics/college/5k9pe2jnt6pl8ekl9e8gph9vu6ycdrrk03.png)
Now, the probability that the average bill for those sampled will exceed $75.00 will be :-
![P(X>75)=P(z>-3.33)=1-P(z\leq-3.33)\\\\=1- 0.0004342=0.9995658\approx0.9996](https://img.qammunity.org/2020/formulas/mathematics/college/epwhju2q5dam27n9irzjmsf1wo8dmdjzdz.png)
Hence, the probability that the average bill for those sampled will exceed $75.00 =0.9996