97.8k views
4 votes
(7x^2y-2)^-1/(4x^-1y)^-2

1 Answer

2 votes

Answer:


\boxed{(16y^(4))/(7x^(4))}

Explanation:

Your expression is


((7x^(2)y^(-2))^(-1))/((4x^(-1)y)^(-2))

1. Handle the outer exponents

Remember that x⁻¹ = 1/x . Then


((7x^(2)y^(-2))^(-1))/((4x^(-1)y)^(-2)) = ((4x^(-1)y)^(2))/(7x^(2)y^(-2))

2. Square the numerator

When you square a number, you multiply its exponent by 2.


((4x^(-1)y)^(2))/(7x^(2)y^(-2)) = (4^(2)x^(-2)y^(2))/(7x^(2)y^(-2))

3. Divide like terms


(4^(2)x^(-2)y^(2))/(7x^(2)y^(-2)) = \left ( (16)/(7)\right)\left ((x^(-2))/(x^(2))\right )\left ((y^(2))/(y^(-2))\right )

4. Evaluate each term

When you divide numbers with exponents, you subtract the exponent in the denominator from that in the numerator


\left ( (16)/(7)\right)\left ((x^(-2))/(x^(2))\right )\left ((y^(2))/(y^(-2))\right ) = \left ( (16)/(7)\right)\left ((x^(-4))/(1)\right )\left ((y^(4))/(1)\right )

5. Move x to the denominator and combine terms


\left ( (16)/(7)\right)\left ((x^(-4))/(1)\right )\left ((y^(4))/(1)\right ) =\mathbf{ (16y^(4))/(7x^(4))}\\\\\text{The simplified expression with positive exponents is } \boxed{\mathbf{(16y^(4))/(7x^(4))}}

User Johannes Hinkov
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories