Answer with Step-by-step explanation:
Let A, B and C are arbitrary sets within a universal set U.
We have to prove that
is always true.
Let
![(x,y)\in (A/B)* C](https://img.qammunity.org/2020/formulas/mathematics/college/djf3e47douaiob9sl2ncjz7tutgvmlagig.png)
Then
and
![y\in C](https://img.qammunity.org/2020/formulas/mathematics/college/vjry97y4j4rebe6zysh48saybf7egawxjl.png)
Therefore,
and
![x\\otin B](https://img.qammunity.org/2020/formulas/mathematics/college/q91xnwe9aq8ned7erl56kxb5549m74o5m8.png)
Then, (x,y) belongs to
![A* C](https://img.qammunity.org/2020/formulas/mathematics/college/ybkuk96nwk2g3hy1ngxoirpe2yundu3flq.png)
and (x,y) does not belongs to
![B* C](https://img.qammunity.org/2020/formulas/mathematics/college/hd32vcugsoadwqjbr4u57w8xph1hu9ej8f.png)
Hence,
![(x,y)\in(A* C)/(B* C)](https://img.qammunity.org/2020/formulas/mathematics/college/kok0aeij0egm9nljzfqpdgp4btr0aeggu1.png)
Conversely ,Let (x ,y)belongs to
![(A* C)/(B* C)](https://img.qammunity.org/2020/formulas/mathematics/college/not8o7toq9tsi6qj222qbywruq2s4p7ek0.png)
Then
and
![(x,y)\\otin (B* C)](https://img.qammunity.org/2020/formulas/mathematics/college/a3011lu2fkuh1ez7t9fnv1tdq1wwozuuuj.png)
Therefore,
and
![x\\otin B,y\in C](https://img.qammunity.org/2020/formulas/mathematics/college/j6mam5td0t7m3xuaf9susvgwl51mf4nt7w.png)
and
![y\in C](https://img.qammunity.org/2020/formulas/mathematics/college/vjry97y4j4rebe6zysh48saybf7egawxjl.png)
Hence,
![(x,y)\in(A/B)* C](https://img.qammunity.org/2020/formulas/mathematics/college/97bjebo6l6mckokwkzquiodnnedw1xpsgz.png)
Therefore,
is always true.
Hence, proved.