Answer:
The correct option is B.
Explanation:
Given information: n(A) = 35, n(B) = 42, n(C) = 45, n(A∩B) = 8, n(A∩C) = 8, n(B∩C) = 6, and n(A∩B∩C) = 3.
We need to find the value of n(A∩(B∩C)')
Using venn diagram we get
n(A∩B∩C')=n(A∩B)-n(A∩B∩C)= 8-3 = 5
n(A∩B'∩C)=n(A∩C)-n(A∩B∩C)= 8-3 = 5
n(A'∩B∩C)=n(B∩C)-n(A∩B∩C)= 6-3 = 3
n(A∩(B∪C)')=n(A)-n(A∩B'∩C)-n(A∩B∩C')-n(A∩B∩C)
n(A∩(B∪C)')=35-5-5-3 = 22
The value of n(A∩(B∪C)') is 22. Therefore the correct option is B.