Answer:
The probability that a survey polling 5 people reveals that at most 2 voters support the candidate is 0.08704.
Explanation:
Given : Suppose that 60% of the voters in a state intend to vote for a certain candidate.
To find : What is the probability that a survey polling 5 people reveals that at most 2 voters support the candidate.
Solution :
Applying binomial probability distribution,
![P(X=k)=(n!)/(k!(n-k)!)* p^k* (1-p)^(n-k)](https://img.qammunity.org/2020/formulas/mathematics/college/vv27byj7skwyppp27pc79vf3im4ntde63q.png)
Here n=5 number of people
p=60%=0.6 probability of success.
k is at most 2 i.e.
![k<2](https://img.qammunity.org/2020/formulas/mathematics/college/61g8065h8wjyz98qjqmqw1imnjw2a89eef.png)
So, Probability is
![P(X<2)=P(0)+P(1)](https://img.qammunity.org/2020/formulas/mathematics/college/ydhl4vl2jzlar40k0rs0l7fvmt4c8oh5sy.png)
The probability for k=0.
![P(X=0)=(5!)/(0!(5-0)!)* 0.6^0* (1-0.6)^(5-0)](https://img.qammunity.org/2020/formulas/mathematics/college/r5755irtcwvyrn94y49qorx8nlslkqm7u4.png)
![P(X=0)=1* 1* 0.01024](https://img.qammunity.org/2020/formulas/mathematics/college/e5owhvm2mkmubnfdh8ktz2g0s59vv5iibd.png)
![P(X=0)=0.01024](https://img.qammunity.org/2020/formulas/mathematics/college/69axht59u136brt54zaglv3fd6rrq6ww02.png)
The probability for k=1.
![P(X=1)=(5!)/(1!(5-1)!)* 0.6^1* (1-0.6)^(5-1)](https://img.qammunity.org/2020/formulas/mathematics/college/zzmlgdsxv9xmcm8sixv4hod2asndrel8rh.png)
![P(X=1)=(5* 4!)/(4!)* 0.6* 0.0256](https://img.qammunity.org/2020/formulas/mathematics/college/ewqg0bt0pxkco4nanux5v26shdx4o7w6ri.png)
![P(X=1)=5* 0.6* 0.0256](https://img.qammunity.org/2020/formulas/mathematics/college/32exri9hml9czn29b63kv7nz1svt4zcdqr.png)
![P(X=1)=0.0768](https://img.qammunity.org/2020/formulas/mathematics/college/rdc18o28gb1hoji6ezq8oq4tid8eenrcca.png)
Substitute in
![P(X<2)=P(0)+P(1)](https://img.qammunity.org/2020/formulas/mathematics/college/ydhl4vl2jzlar40k0rs0l7fvmt4c8oh5sy.png)
![P(X<2)=0.01024+0.0768](https://img.qammunity.org/2020/formulas/mathematics/college/2d3rq4k1n759ivr66dbgnu5354uaqnxa30.png)
![P(X<2)=0.08704](https://img.qammunity.org/2020/formulas/mathematics/college/eaesgal6ei0taocv8p7m3qilahe4u6smnb.png)
Therefore, The probability that a survey polling 5 people reveals that at most 2 voters support the candidate is 0.08704.