![y^((5))-2y^((4))+y^((3))=0](https://img.qammunity.org/2020/formulas/mathematics/college/8pcylcpl81w1mr8phsy9y0u2o6wfh7i02m.png)
We can reduce the order of the ODE by substituting
, so that
and
. Then
![v''-2v'+v=0](https://img.qammunity.org/2020/formulas/mathematics/college/hl1z9bov5i71cj1gn4bvwg62gnk1zi745u.png)
has characteristic equation
![r^2-2r+1=(r-1)^2=0](https://img.qammunity.org/2020/formulas/mathematics/college/gc3lea4jmcijvsbyi0dronmnt7jw3f52ni.png)
with root
, which has multiplicity 2, so that the characteristic solution is
![v_c=C_1e^x+C_2xe^x](https://img.qammunity.org/2020/formulas/mathematics/college/shoenliwesawr7g5lauk2fuzpjxs82osmt.png)
Integrate both sides to solve for
:
![y''=C_1e^x+C_2e^x(x-1)+C_3](https://img.qammunity.org/2020/formulas/mathematics/college/46r2ghoix8gzmwqtgksfjbuld3666nznf5.png)
![y''=C_1e^x+C_2xe^x+C_3](https://img.qammunity.org/2020/formulas/mathematics/college/nv8wkuh267vu4a2ijd5rq1u8gkpcf9807m.png)
Integrate again to solve for
:
![y'=C_1e^x+C_2e^x(x-1)+C_3x+C_4](https://img.qammunity.org/2020/formulas/mathematics/college/b490wblhj7alvdduc5ixodacbqgczlqhdp.png)
![y'=C_1e^x+C_2xe^x+C_3x+C_4](https://img.qammunity.org/2020/formulas/mathematics/college/opvc7pug8nrkkr5nm23qxgc8c8mbc2jtcd.png)
And one last time to solve for
:
![y=C_1e^x+C_2e^x(x-1)+\frac{C_3}2x^2+C_4x+C_5](https://img.qammunity.org/2020/formulas/mathematics/college/wux1ew2hqglmdb3o1h3hjqkczp822pvzww.png)
![\boxed{y(x)=C_1e^x+C_2e^x+C_3x^2+C_4x+C_5}](https://img.qammunity.org/2020/formulas/mathematics/college/v2537ox3aq73llsrboifph7fizziae6xc0.png)