150k views
0 votes
What is the following product ^3sqrt16x^7*^3sqrt12x^9

What is the following product ^3sqrt16x^7*^3sqrt12x^9-example-1
User Thiaguerd
by
5.6k points

2 Answers

3 votes

Answer:

The expression
\sqrt[3]{16x^(7) } * \sqrt[3]{12x^(9) } =
4x^(5)} (\sqrt[3]{3x})

Explanation:

Given


\sqrt[3]{16x^(7) } * \sqrt[3]{12x^(9) }

Required

Products of both

To do this, we have to apply the laws of indices,

Follow the highlighted steps

Step 1: Multiply both parameters directly

Since they both have the same roots, they can be multiplied directly according to the law of indices


\sqrt[3]{16x^(7) } * \sqrt[3]{12x^(9) } becomes


\sqrt[3]{16x^(7) * 12x^(9) }

Step 2: Apply the 1st law of indices

First law of indices states that


x^(a) * x^(b) = x^(a + b)

So,
\sqrt[3]{16x^(7) * 12x^(9) } becomes


\sqrt[3]{16x^(7) * 12x^(9) } =
\sqrt[3]{16 * 12 * x^(7) * x^(9) }


\sqrt[3]{16x^(7) * 12x^(9) } =
\sqrt[3]{16 * 12 * x^(7+9) }


\sqrt[3]{16x^(7) * 12x^(9) } =
\sqrt[3]{16 * 12 * x^(16) }


\sqrt[3]{16x^(7) * 12x^(9) } =
\sqrt[3]{192 * x^(16) }

Step 3: Rewrite the expression


\sqrt[3]{192 * x^(16) } =
({192 * x^(16) })^{(1)/(3) }

Step 4: Expand the Expression in bracket


({192 * x^(16) })^{(1)/(3) } =
({64 * 3* x^(15) * x^(1) })^{(1)/(3) }

Break down into bits


({192 * x^(16) })^{(1)/(3) } =
64^(1)/(3) * 3^(1)/(3) * (x^(15))^(1)/(3) * (x^(1))(1)/(3)


({192 * x^(16) })^{(1)/(3) } =
(4^(3)) ^(1)/(3) * 3^(1)/(3) * (x^(15))^(1)/(3) * (x^(1))(1)/(3)


({192 * x^(16) })^{(1)/(3) } =
(4^{3*(1)/(3)}) * 3^(1)/(3) * (x^(15)*^(1)/(3)) * (x^{(1)/(3)})


({192 * x^(16) })^{(1)/(3) } =
4 * 3^(1)/(3) * (x^(5)}) * (x^{(1)/(3)})


({192 * x^(16) })^{(1)/(3) } =
4 (x^(5)})* 3^(1)/(3) * (x^{(1)/(3)})


({192 * x^(16) })^{(1)/(3) } =
4x^(5)} * (3^(1)/(3) * x^{(1)/(3)})


({192 * x^(16) })^{(1)/(3) } =
4x^(5)} * (3x)^(1)/(3)


({192 * x^(16) })^{(1)/(3) } =
4x^(5)} * \sqrt[3]{3x}


({192 * x^(16) })^{(1)/(3) } =
4x^(5)} (\sqrt[3]{3x})

Hence, the expression
\sqrt[3]{16x^(7) } * \sqrt[3]{12x^(9) } =
4x^(5)} (\sqrt[3]{3x})

User Reza Rahemtola
by
5.0k points
3 votes

Answer:

4x^5\sqrt[3]{3x}

Explanation:

Given


\sqrt[3]{16x^7}\left(\sqrt[3]{12x^9}\right)\\\sqrt[3]{4^(2) x^7}\sqrt[3]{4(3)x^9}\\  4^(2)/(3) . x^(7)/(3) . 4^(1)/(3) . 3^(1)/(3) . x^(9)/(3)\\  4^(2+1)/(3) .  3^(1)/(3). x^(9+7)/(3) \\4^(3)/(3) . 3^(1)/(3). x^(16)/(3)\\ 4\sqrt[3]{3x^16}


4\sqrt[3]{3} . x^(16)/(3) \\4\sqrt[3]{3} . x^(15)/(3) .x^(1)/(3) \\4\sqrt[3]{3} . x^5 .x^(1)/(3) \\4x^5\sqrt[3]{3x} !

User Jason Galuten
by
5.5k points