Answer:
The expression
=
![4x^(5)} (\sqrt[3]{3x})](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ce97cb7f1g7xdjxxe3htxarltibl2v8vma.png)
Explanation:
Given
![\sqrt[3]{16x^(7) } * \sqrt[3]{12x^(9) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6ud8ripdrxohsujtf1zr75aw1vidtndz95.png)
Required
Products of both
To do this, we have to apply the laws of indices,
Follow the highlighted steps
Step 1: Multiply both parameters directly
Since they both have the same roots, they can be multiplied directly according to the law of indices
becomes
![\sqrt[3]{16x^(7) * 12x^(9) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jf7y9mjxknxgbu5g84glwuthbcvfj16lbk.png)
Step 2: Apply the 1st law of indices
First law of indices states that
![x^(a) * x^(b) = x^(a + b)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4ds69sosoeppaj5gyzdyvzutni8c820jmb.png)
So,
becomes
=
![\sqrt[3]{16 * 12 * x^(7) * x^(9) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ft9xha6iqimdfe1wb9cyfcw3f25d01azeh.png)
=
![\sqrt[3]{16 * 12 * x^(7+9) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9axewj0tx0qdul2uog45n25ng6qh7gwymo.png)
=
![\sqrt[3]{16 * 12 * x^(16) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d1edrax2aucwidrts8yljzyelknt15o4wm.png)
=
![\sqrt[3]{192 * x^(16) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bk027hvz9p9iq4dtpmvdydsi6xujtl8bz2.png)
Step 3: Rewrite the expression
=
![({192 * x^(16) })^{(1)/(3) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8bf7gd1vogd8hkpbtpiqf55jvpdr3wkeob.png)
Step 4: Expand the Expression in bracket
=
![({64 * 3* x^(15) * x^(1) })^{(1)/(3) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yjurzd7ykguf1m8egumha1iw8wkwbvx3oa.png)
Break down into bits
=
![64^(1)/(3) * 3^(1)/(3) * (x^(15))^(1)/(3) * (x^(1))(1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c60f1014khgo7mo5jwcp65p0p56i82yz98.png)
=
![(4^(3)) ^(1)/(3) * 3^(1)/(3) * (x^(15))^(1)/(3) * (x^(1))(1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y55zvv72q7wddzxfyq8r2omqvq9gwyde4f.png)
=
![(4^{3*(1)/(3)}) * 3^(1)/(3) * (x^(15)*^(1)/(3)) * (x^{(1)/(3)})](https://img.qammunity.org/2020/formulas/mathematics/middle-school/eki5gf4gq4liy0kunfsztgmage3gplr91b.png)
=
![4 * 3^(1)/(3) * (x^(5)}) * (x^{(1)/(3)})](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2mcrveumohj97iepjfkfzokdpev3r5oyli.png)
=
![4 (x^(5)})* 3^(1)/(3) * (x^{(1)/(3)})](https://img.qammunity.org/2020/formulas/mathematics/middle-school/87hsxd5xjccnr9p8p8zmowjoewf467tyb3.png)
=
![4x^(5)} * (3^(1)/(3) * x^{(1)/(3)})](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p7j5sjuuemx39pn2hgauve54wyz6iqprtk.png)
=
![4x^(5)} * (3x)^(1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c1cionesa28l0kylejhpuvvctwut8dm09a.png)
=
![4x^(5)} * \sqrt[3]{3x}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2kiexfgkc3l8eik10b865s1hhclwkuxame.png)
=
![4x^(5)} (\sqrt[3]{3x})](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ce97cb7f1g7xdjxxe3htxarltibl2v8vma.png)
Hence, the expression
=
![4x^(5)} (\sqrt[3]{3x})](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ce97cb7f1g7xdjxxe3htxarltibl2v8vma.png)