Answer:
![\boxed{1.33 * 10^(-5)\, \text{mol/L}}}](https://img.qammunity.org/2020/formulas/chemistry/college/pkardoiu8auy8tnnjhf586ykjznk9qfyp2.png)
Step-by-step explanation:
Data:
c₀ = 1.33 mol·L⁻¹
Dilutions = 2 mL stock + 18 mL water
n = five dilutions
Calculations:
The general formula is for calculating a single dilution ratio (DR) is
![DR = (V_(i))/(V_(f))](https://img.qammunity.org/2020/formulas/chemistry/college/ugls6kkut0a9t31tgdn87mvvsbkgntfam2.png)
For your dilutions,
![V_(i) = \text{2 mL}\\V_(f) = \text{20 mL}\\DR = \frac{ \text{2 mL}}{\text{20 mL}} = (1)/(10)](https://img.qammunity.org/2020/formulas/chemistry/college/fgzzxklidb1qiz7vchcwk4onjhaqxsdbk5.png)
(Note: This is the same as a dilution factor of 10:1)
The general formula for the concentration cₙ after n identical serial dilutions is
![c_(n) = c_(0)(\text{DR})^(n)](https://img.qammunity.org/2020/formulas/chemistry/college/pedhsdzr3vuyrfkccz6v1t2571ag8jef20.png)
So, after five dilutions
![c_(5) =1.33 \left ((1)/(10) \right )^(5)=1.33\left ( (1)/(10^(5)) \right ) = \mathbf{1.33 * 10^(-5)}\textbf{ mol/L}\\\\\text{The final concentration is $\boxed{\mathbf{1.33 * 10^(-5)\, mol/L}}$}](https://img.qammunity.org/2020/formulas/chemistry/college/bmnbv1fep4o5a07mfh913eqjdqe9xan2kv.png)