37.7k views
4 votes
Please help prove these identities!

Please help prove these identities!-example-1

1 Answer

5 votes

Hi! It will be a pleasure to help you to prove these identities, so let's get started:

PART a)

We have the following expression:


tan(\theta)cot(\theta)-sin^(2)(\theta)=cos^2(\theta)

We know that:


cot(\theta)=(1)/(cot(\theta))

Therefore, by substituting in the original expression:


tan(\theta)\left((1)/(tan(\theta))\right)-sin^(2)(\theta)=cos^2(\theta) \\ \\ \\ Simplifying: \\ \\ 1-sin^2(\theta)=cos^2(\theta)

We know that the basic relationship between the sine and the cosine determined by the Pythagorean identity, so:


sin^2(\theta)+cos^2(\theta)=1

By subtracting
sin^2(\theta) from both sides, we get:


\boxed{cos^2(\theta)=1-sin^2(\theta)} \ Proved!

PART b)

We have the following expression:


(cos(\alpha))/(cos(\alpha)-sin(\alpha))=(1)/(1-tan(\alpha))

Here, let's multiply each side by
cos(\alpha)-sin(\alpha):


(cos(\alpha)-sin(\alpha))\left((cos(\alpha))/(cos(\alpha)-sin(\alpha))\right)=(cos(\alpha)-sin(\alpha))\left((1)/(1-tan(\alpha))\right) \\ \\ Then: \\ \\ cos(\alpha)=(cos(\alpha)-sin(\alpha))/(1-tan(\alpha))

We also know that:


tan(\alpha)=(sin(\alpha))/(cos(\alpha))

Then:


cos(\alpha)=(cos(\alpha)-sin(\alpha))/(1-(sin(\alpha))/(cos(\alpha))) \\ \\ \\ Simplifying: \\ \\ cos(\alpha)=(cos(\alpha)-sin(\alpha))/((cos(\alpha)-sin(\alpha))/(cos(\alpha))) \\ \\ Or: \\ \\ cos(\alpha)=((cos(\alpha)-sin(\alpha))/(1))/((cos(\alpha)-sin(\alpha))/(cos(\alpha))) \\ \\ Then: \\ \\ cos(\alpha)=cos(\alpha).(cos(\alpha)-sin(\alpha))/(cos(\alpha)-sin(\alpha)) \\ \\ \boxed{cos(\alpha)=cos(\alpha)} \ Proved!

PART c)

We have the following expression:


(cos(x+y))/(cosxsiny)=coty-tanx

From Angle Sum Property, we know that:


cos(x+y)=cos(x)cos(y)-sin(x)sin(y)

Substituting this in our original expression, we have:


(cos(x)cos(y)-sin(x)sin(y))/(cosxsiny)=coty-tanx

But we can also write this as follows:


\\ (cosxcosy)/(cosxsiny)-(sinxsiny)/(cosxsiny)=coty-tanx \\ \\ Simplifying: \\ \\ (cosy)/(siny)-(sinx)/(cosx) =coty-tanx \\ \\ But: \\ \\ (cosy)/(siny)=coty \\ \\ (sinx)/(cosx)=tanx \\ \\ Hence: \\ \\ \boxed{coty-tanx=coty-tanx} \ Proved!

PART d)

We have the following expression:


\ln\left|1+cos \theta\right|+\ln\left|1-cos \theta\right|=2\ln\left|sin \theta\right|

By Logarithm product rule, we know:


log_(b)(x.y) = log_(b)(x) + log_(b)(y)

So:


\ln\left|1+cos \theta\right|+\ln\left|1-cos \theta\right|=\ln\left|(1+cos \theta)(1-cos \theta)\right|

The Difference of Squares states that:


a^2-b^2=(a+b)(a-b) \\ \\ So: \\ \\ (1+cos \theta)(1-cos \theta)=1-cos^2 \theta

Then:


\ln\left|(1+cos \theta)(1-cos \theta)\right|=\ln\left|1-cos^(2) \theta\right|

By the Pythagorean identity:


sin^2(\theta)+cos^2(\theta)=1 \\ \\ So: \\ \\ sin^2 \theta = 1-cos^2 \theta

Then:


\ln\left|1-cos^(2) \theta\right|=\ln\left|sin^2 \theta|

By Logarithm power rule, we know:


log_(b)(x.y) = ylog_(b)(x)

Then:


\ln\left|sin^2 \theta|=2\ln\left|sin \theta|

In conclusion:


\boxedsin \theta\right \ Proved!

User Jeahel
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories