Hi! It will be a pleasure to help you to prove these identities, so let's get started:
PART a)
We have the following expression:
![tan(\theta)cot(\theta)-sin^(2)(\theta)=cos^2(\theta)](https://img.qammunity.org/2020/formulas/mathematics/high-school/i7mxuer5tl8xs33g9bnafuhxnxjw1ve4qy.png)
We know that:
![cot(\theta)=(1)/(cot(\theta))](https://img.qammunity.org/2020/formulas/mathematics/high-school/o8i06j665cyvl1bjvwgqaihe1lrhc3wtqs.png)
Therefore, by substituting in the original expression:
![tan(\theta)\left((1)/(tan(\theta))\right)-sin^(2)(\theta)=cos^2(\theta) \\ \\ \\ Simplifying: \\ \\ 1-sin^2(\theta)=cos^2(\theta)](https://img.qammunity.org/2020/formulas/mathematics/high-school/e8n0vfdqarry2hqo73h7ma2r56qjsvks0z.png)
We know that the basic relationship between the sine and the cosine determined by the Pythagorean identity, so:
![sin^2(\theta)+cos^2(\theta)=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/7v33rrd6f1rqr7pgkbhit8r2nztsxp5md5.png)
By subtracting
from both sides, we get:
![\boxed{cos^2(\theta)=1-sin^2(\theta)} \ Proved!](https://img.qammunity.org/2020/formulas/mathematics/high-school/qzlnxb7myu8jlo4cc7068r0qmpab4ik6u7.png)
PART b)
We have the following expression:
![(cos(\alpha))/(cos(\alpha)-sin(\alpha))=(1)/(1-tan(\alpha))](https://img.qammunity.org/2020/formulas/mathematics/high-school/lu3m6ener6rpr0g70uqey1v51318plx33s.png)
Here, let's multiply each side by
:
![(cos(\alpha)-sin(\alpha))\left((cos(\alpha))/(cos(\alpha)-sin(\alpha))\right)=(cos(\alpha)-sin(\alpha))\left((1)/(1-tan(\alpha))\right) \\ \\ Then: \\ \\ cos(\alpha)=(cos(\alpha)-sin(\alpha))/(1-tan(\alpha))](https://img.qammunity.org/2020/formulas/mathematics/high-school/reoqn4qm9g5kdqo0g5ni68nivecdj9kpq9.png)
We also know that:
![tan(\alpha)=(sin(\alpha))/(cos(\alpha))](https://img.qammunity.org/2020/formulas/mathematics/high-school/wn7cmj2id68cu1mmfil0juf60gjg85m11u.png)
Then:
![cos(\alpha)=(cos(\alpha)-sin(\alpha))/(1-(sin(\alpha))/(cos(\alpha))) \\ \\ \\ Simplifying: \\ \\ cos(\alpha)=(cos(\alpha)-sin(\alpha))/((cos(\alpha)-sin(\alpha))/(cos(\alpha))) \\ \\ Or: \\ \\ cos(\alpha)=((cos(\alpha)-sin(\alpha))/(1))/((cos(\alpha)-sin(\alpha))/(cos(\alpha))) \\ \\ Then: \\ \\ cos(\alpha)=cos(\alpha).(cos(\alpha)-sin(\alpha))/(cos(\alpha)-sin(\alpha)) \\ \\ \boxed{cos(\alpha)=cos(\alpha)} \ Proved!](https://img.qammunity.org/2020/formulas/mathematics/high-school/z8vhxwppbd86vvsvon3tbgcizwmewznjfx.png)
PART c)
We have the following expression:
![(cos(x+y))/(cosxsiny)=coty-tanx](https://img.qammunity.org/2020/formulas/mathematics/high-school/3hf7eqhlzpo6mpm2vtvqvqagwliycb15ls.png)
From Angle Sum Property, we know that:
![cos(x+y)=cos(x)cos(y)-sin(x)sin(y)](https://img.qammunity.org/2020/formulas/mathematics/high-school/4z8m0mkf2dmnsfbedgibnx7l1elbioask5.png)
Substituting this in our original expression, we have:
![(cos(x)cos(y)-sin(x)sin(y))/(cosxsiny)=coty-tanx](https://img.qammunity.org/2020/formulas/mathematics/high-school/6syufpgxfqw5ee750czwuvf0o31up7ceul.png)
But we can also write this as follows:
![\\ (cosxcosy)/(cosxsiny)-(sinxsiny)/(cosxsiny)=coty-tanx \\ \\ Simplifying: \\ \\ (cosy)/(siny)-(sinx)/(cosx) =coty-tanx \\ \\ But: \\ \\ (cosy)/(siny)=coty \\ \\ (sinx)/(cosx)=tanx \\ \\ Hence: \\ \\ \boxed{coty-tanx=coty-tanx} \ Proved!](https://img.qammunity.org/2020/formulas/mathematics/high-school/mkap1vmixrrtndlv1sco05ujv73s4p4b6t.png)
PART d)
We have the following expression:
![\ln\left|1+cos \theta\right|+\ln\left|1-cos \theta\right|=2\ln\left|sin \theta\right|](https://img.qammunity.org/2020/formulas/mathematics/high-school/u97uky3dls4vcz8tayl687oj7oe1775k6u.png)
By Logarithm product rule, we know:
![log_(b)(x.y) = log_(b)(x) + log_(b)(y)](https://img.qammunity.org/2020/formulas/mathematics/high-school/31mgs9vsyeqks4gdz2rxb7j3xdsewi7ra5.png)
So:
![\ln\left|1+cos \theta\right|+\ln\left|1-cos \theta\right|=\ln\left|(1+cos \theta)(1-cos \theta)\right|](https://img.qammunity.org/2020/formulas/mathematics/high-school/xwvz5dltcmtip8j5e3wo9gayy5m97yujnm.png)
The Difference of Squares states that:
![a^2-b^2=(a+b)(a-b) \\ \\ So: \\ \\ (1+cos \theta)(1-cos \theta)=1-cos^2 \theta](https://img.qammunity.org/2020/formulas/mathematics/high-school/ckjce28y1t3kt9xguu3g8z5h86i3f6pega.png)
Then:
![\ln\left|(1+cos \theta)(1-cos \theta)\right|=\ln\left|1-cos^(2) \theta\right|](https://img.qammunity.org/2020/formulas/mathematics/high-school/wqu3ohxjr6zw2csxeybp6hbfnf5i1hsrqs.png)
By the Pythagorean identity:
![sin^2(\theta)+cos^2(\theta)=1 \\ \\ So: \\ \\ sin^2 \theta = 1-cos^2 \theta](https://img.qammunity.org/2020/formulas/mathematics/high-school/czlxv32gn59fpfa1ch08d794knai5x5ucx.png)
Then:
![\ln\left|1-cos^(2) \theta\right|=\ln\left|sin^2 \theta|](https://img.qammunity.org/2020/formulas/mathematics/high-school/32wnflyi2vs9exzt3km03tx08ok3tlc7pj.png)
By Logarithm power rule, we know:
![log_(b)(x.y) = ylog_(b)(x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ubggkarbgj2518khzd24vjbkgt8tu2g2bx.png)
Then:
![\ln\left|sin^2 \theta|=2\ln\left|sin \theta|](https://img.qammunity.org/2020/formulas/mathematics/high-school/wko8nthu8a406v8392lc29d2bjavn5p7n9.png)
In conclusion:
![\boxedsin \theta\right \ Proved!](https://img.qammunity.org/2020/formulas/mathematics/high-school/ymtwtzha3onirotjs1q592t1072e4mpdog.png)