197k views
1 vote
Find the area under the standard normal probability distribution between the following pairs of z-scores. a. z=0 and z=3.00 e. z=-3.00 and z=0 b. z=0 and z=1.00 f. z=-1.00 and z=0 c. z=0 and z=2.00 g. z=negative 1.19 and z=0 d. z=0 and z=0.61 h. z=-0.61 and z=0

User Dansalmo
by
8.0k points

1 Answer

1 vote

Answer:

a) 0.49865

b) 0.34134

c) 0.47725

d) 0.22907

e) 0.49865

f) 0.34134

g) 0.38298

h) 0.22907

Explanation:

* Lets explain how to solve the problem

a) P(0 < z < 3)

- From the normal distribution table of z

∵ P(0 < z < 3) = 0.99865 - 0.50000 = 0.49865

P(0 < z < 3) = 0.49865

b) P(0 < z < 1)

- From the normal distribution table of z

∵ P(0 < z < 1) = 0.84134 - 0.50000 = 0.34134

P(0 < z < 1) = 0.34134

c) P(0 < z < 2)

- From the normal distribution table of z

∵ P(0 < z < 2) = 0.97725 - 0.50000 = 0.47725

∴ P(0 < z < 2) = 0.47725

d) P(0 < z < 0.61)

- From the normal distribution table of z

∵ P(0 < z < 0.61) = 0.72907 - 0.50000 = 0.22907

∴ P(0 < z < 0.61) = 0.22907

e) P(-3 < z < 0)

- From the normal distribution table of z

∵ P(-3 < z < 0) = 0.50000 - 0.00135 = 0.49865

∴ P(-3 < z < 0) = 0.49865

f) P(-1 < z < 0)

- From the normal distribution table of z

∵ P(-1 < z < 0) = 0.50000 - 0.15866 = 0.34134

P(-1 < z < 0) = 0.34134

g) P(-1.19 < z < 0)

- From the normal distribution table of z

∵ P(-1.19 < z < 0) = 0.50000 - 0.11702 = 0.38298

P(-1.19 < z < 0) = 0.38298

h) P(-0.61 < z < 0)

- From the normal distribution table of z

∵ P(-0.61 < z < 0) = 0.50000 - 0.27093 = 0.22907

P(-0.61 < z < 0) = 0.22907

User LearnToday
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories