Answer:
a) 0.49865
b) 0.34134
c) 0.47725
d) 0.22907
e) 0.49865
f) 0.34134
g) 0.38298
h) 0.22907
Explanation:
* Lets explain how to solve the problem
a) P(0 < z < 3)
- From the normal distribution table of z
∵ P(0 < z < 3) = 0.99865 - 0.50000 = 0.49865
∴ P(0 < z < 3) = 0.49865
b) P(0 < z < 1)
- From the normal distribution table of z
∵ P(0 < z < 1) = 0.84134 - 0.50000 = 0.34134
∴ P(0 < z < 1) = 0.34134
c) P(0 < z < 2)
- From the normal distribution table of z
∵ P(0 < z < 2) = 0.97725 - 0.50000 = 0.47725
∴ P(0 < z < 2) = 0.47725
d) P(0 < z < 0.61)
- From the normal distribution table of z
∵ P(0 < z < 0.61) = 0.72907 - 0.50000 = 0.22907
∴ P(0 < z < 0.61) = 0.22907
e) P(-3 < z < 0)
- From the normal distribution table of z
∵ P(-3 < z < 0) = 0.50000 - 0.00135 = 0.49865
∴ P(-3 < z < 0) = 0.49865
f) P(-1 < z < 0)
- From the normal distribution table of z
∵ P(-1 < z < 0) = 0.50000 - 0.15866 = 0.34134
∴ P(-1 < z < 0) = 0.34134
g) P(-1.19 < z < 0)
- From the normal distribution table of z
∵ P(-1.19 < z < 0) = 0.50000 - 0.11702 = 0.38298
∴ P(-1.19 < z < 0) = 0.38298
h) P(-0.61 < z < 0)
- From the normal distribution table of z
∵ P(-0.61 < z < 0) = 0.50000 - 0.27093 = 0.22907
∴ P(-0.61 < z < 0) = 0.22907