Answer:
194
Explanation:
Recall 2 rules to solve this easily:
1.
![(a+b)^2=a^2+2ab+b^2](https://img.qammunity.org/2020/formulas/mathematics/college/kjx1dnhjbtrcty2dpa3khsnj2at6j6c6g3.png)
2.
![(a-b)^2=a^2-2ab+b^2](https://img.qammunity.org/2020/formulas/mathematics/college/70ipl711irngjhsq8valwop0eu98ltnm9z.png)
Now, if we let a = 7 and
, we can say the problem is basically of the form:
![(a+b)^2 + (a-b)^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/upghkctkx0j562fc2kstupjd2fmnbzjyz6.png)
This can be simplified using the rules:
![(a+b)^2 + (a-b)^2\\a^2+2ab+b^2+a^2-2ab+b^2\\2a^2+2b^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1n7il5wgs88c1h31bu0cleyz7ck78ip883.png)
Now we can plug the values of a and b we initially thought of (remember though
):
![2a^2+2b^2\\2(7)^2+2(4√(3))^2\\ 2(49)+2(4√(3))(4√(3))\\98+2(4)(4)(√(3) )(√(3) )\\98+2(4)(4)(3)\\98+96 \\194](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zxgjw8wfe857990bvfyp1oly2gs06ox7ux.png)
194 is the final answer.