Answer: (1.64,4.01)
Explanation:
The confidence interval for the population variance is given by :-
![\left ( ((n-1)s^2)/(\chi^2_(n-1,\alpha/2)),\ ((n-1)s^2)/(\chi^2_(n-1,1-\alpha/2)) \ \right )](https://img.qammunity.org/2020/formulas/mathematics/college/zpo5l7143pwpqsgoy7cj35au1cpbu5pyzr.png)
Given : n= 69 ;
![s^2=2.46](https://img.qammunity.org/2020/formulas/mathematics/college/cygbkuj0lgof5aflag7jrr8zcqxfqhed99.png)
Significance level :
![\alpha=1-0.99=0.01](https://img.qammunity.org/2020/formulas/mathematics/college/hw7rszmzf85gg8hr51vodzmidxo6k6eals.png)
Using Chi-square distribution table ,
[by using chi-square distribution table]
Now, the 95% confidence interval for the standard deviation of the height of students at UH is given by :-
![\left ( ((68)(2.46))/(101.77592),\ ((68)(2.46))/(41.71347) \ \right )\\\\=\left ( 1.64361078731, 4.01021540524\right )\approx(1.64,\ 4.01)](https://img.qammunity.org/2020/formulas/mathematics/college/o6npfe2zkvhnpfd26oz7d47ztaxf8q6ql7.png)
Hence, the 99% confidence interval for the population variance of the weights of all axles in this factory is (1.64,4.01).