Answer:
For a: The number of moles of oxygen gas is 0.74375 moles.
For b: The energy transferred to oxygen as heat is
![2.631* 10^3](https://img.qammunity.org/2020/formulas/chemistry/college/apmh9e3li8z3jdq1vssmprd6qawdwe92yj.png)
For c: The fraction of heat used to raise the internal energy of oxygen is 0.714.
Step-by-step explanation:
To calculate the number of moles, we use the equation:
![\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}](https://img.qammunity.org/2020/formulas/chemistry/high-school/gwh5prgbdt4s2p8o8xquycz897bwt6lvw1.png)
Given mass of oxygen gas = 23.8 g
Molar mass of oxygen gas = 32 g/mol
Putting values in above equation, we get:
![\text{Moles of oxygen gas}=(23.8g)/(32g/mol)=0.74375mol](https://img.qammunity.org/2020/formulas/chemistry/college/acp3ee3n4r9e4uiww0qk4dz5cj32vdwre8.png)
Hence, the number of moles of oxygen gas is 0.74375 moles.
Oxygen is a diatomic gas.
To calculate the amount of heat transferred, we use the equation:
![Q=nC_p\Delta T](https://img.qammunity.org/2020/formulas/chemistry/college/shztfk5vg680v2udni45zhevxpnxziybk5.png)
where,
Q = heat absorbed or released
n = number of moles of oxygen gas = 0.74375 moles
= specific heat capacity at constant pressure =
(For diatomic gas)
R = gas constant = 8.314 J/mol K
= change in temperature =
![(149-27.4)^oC=121.6^oC=121.6K](https://img.qammunity.org/2020/formulas/chemistry/college/6txv95ufl9mzi5alikwvm4lpx3kvwnc09f.png)
Putting values in above equation, we get:
![Q=0.74375mol* ((7)/(2))* 8.314J/mol.K* 121.6K\\\\Q=2631.71J=2.631* 10^3J](https://img.qammunity.org/2020/formulas/chemistry/college/tt9loihl1kq0vuilpf10ah392w81osgbg4.png)
Hence, the energy transferred to oxygen as heat is
![2.631* 10^3](https://img.qammunity.org/2020/formulas/chemistry/college/apmh9e3li8z3jdq1vssmprd6qawdwe92yj.png)
To calculate the fraction of heat, we use the equation:
![f=(U)/(Q)](https://img.qammunity.org/2020/formulas/chemistry/college/37ykuuw5dvorrg3iy75lezgfxj0o2rpv75.png)
where,
U = internal energy =
![nC_v\Delta T](https://img.qammunity.org/2020/formulas/chemistry/college/bojm3nzvpyvpfqjxq1d0ar4u5f6mcd89cc.png)
Calculating the value of U:
n = number of moles of oxygen gas = 0.74375 moles
= specific heat capacity at constant pressure =
(For diatomic gas)
R = gas constant = 8.314 J/mol K
= change in temperature =
![(149-27.4)^oC=121.6^oC=121.6K](https://img.qammunity.org/2020/formulas/chemistry/college/6txv95ufl9mzi5alikwvm4lpx3kvwnc09f.png)
Putting values in above equation, we get:
![U=0.74375mol* ((5)/(2))* 8.314J/mol.K* 121.6K\\\\U=1879.79J=1.879* 10^3J](https://img.qammunity.org/2020/formulas/chemistry/college/lnn38gjztd6h3a28z1ul9x7xj1ut3teb5c.png)
Taking the ratio of 'U' and 'Q', we get:
![f=(1.879* 10^3)/(2.631* 10^3)\\\\f=0.714](https://img.qammunity.org/2020/formulas/chemistry/college/7ltg7faijgw26k00zzxorbeperp322j95h.png)
Hence, the fraction of heat used to raise the internal energy of oxygen is 0.714.