Answer:
(a) water height =408.66 in.
(b) mercury height=30.04 in.
Step-by-step explanation:
Given: P=14.769 psi ( 1 psi= 6894.76
)
we know that
![P=\rho* g*h](https://img.qammunity.org/2020/formulas/engineering/college/ouyieer0aqslif0zvg7u8ps4atpfuxyat9.png)
where
![\rho =Density,g=9.81(m)/(s^2)](https://img.qammunity.org/2020/formulas/engineering/college/a73wb2u3m33j7l2zvdazieb70sxasp56u2.png)
h=height.
Given that P=14.769 psi ⇒P= 101828.6 7
![(N)/(m^2)](https://img.qammunity.org/2020/formulas/engineering/college/q43mgl8wlz1g0ye8eo19qqrix6emnryxqi.png)
(a)
![\rho_(w)=1000(Kg)/(m^3)](https://img.qammunity.org/2020/formulas/engineering/college/lpd5wwtyjz1krfsnpchvs9ytcg4qe1oqnj.png)
⇒101828.67=
![1000* 9.81* h_(w)](https://img.qammunity.org/2020/formulas/engineering/college/wzsrhosrfjorzlwb7jnauicgg57aqnq246.png)
=10.38 m
So water barometer will read 408.66 in. (1 m=39.37 in)
(b)
![P=\rho_(hg)* g* h_(hg)](https://img.qammunity.org/2020/formulas/engineering/college/rijg8rwavdnkglr7e9rtxeyamz5td6hcnn.png)
=13600
So 101828.67=
![13600* 9.81* h_(hg)](https://img.qammunity.org/2020/formulas/engineering/college/40zlk2k2htiwculnrqblyd8gijinral2np.png)
=0.763 m
So mercury barometer will read 30.04 in.