Answer:
by principal stress theory
t = 20.226
by total strain theory
t = 20.36
Step-by-step explanation:
given data
internal radius
= 150 mm
pressure p = 80 MPa
yield strength = 300 MPa
poisson's ratio = 0.3
a) by principal stress theory
thickness can be obtained as t
t =
![r_(1)\left [ ((\sigma _(y) +p)/(\sigma _(y) - 0.5p))^(1/3)-1 \right ]](https://img.qammunity.org/2020/formulas/engineering/college/9n05y29kq7ijttttwmjgau9szzwc6hq4hr.png)
t = = 150\left [ (\frac{300 +80}{300-0.5*80})^{1/3}-1 \right ]
t = 20.226
b) by total strain theory
m =
![(\sigma _(y))/(p)](https://img.qammunity.org/2020/formulas/engineering/college/jiq5lzcg1dsjqf1iwnltu4sl9ewi7t674v.png)
m =
= 3.75
we know that
K =
![(r_(2))/(r_(1) )](https://img.qammunity.org/2020/formulas/engineering/college/jaeaixxny4dzrm376u7mx6t0lv433ytl8a.png)
![(K^(3)+1)/(K^(3)-1)= \frac{-2\mu +\sqrt{4\mu^(2)-2(1-\mu)(1-m^{^(2)}))}}{1-\mu}](https://img.qammunity.org/2020/formulas/engineering/college/44kgxzmuwwg7xxbdt4fcbhvcy7bn4j73aw.png)
![(K^(3)+1)/(K^(3)-1)= \frac{-2*0.3 +\sqrt{4*0.3^(2)-2(1-0.3)(1-3.75^{^(2)}))}}{1-0.3}](https://img.qammunity.org/2020/formulas/engineering/college/8ds9xlug3t9wxtwiw5s4ovetkac8pr964l.png)
![(K^(3)+1)/(K^(3)-1)= 5.3](https://img.qammunity.org/2020/formulas/engineering/college/g4jmqfj7m8zt67i9g25u5e368r11jle0y0.png)
k = 1.13
1.13 =
![(r_(2))/(150 )](https://img.qammunity.org/2020/formulas/engineering/college/i3ybyn9kaiht2ojbrpl496tw3x1c3n8lb5.png)
= 170.36 mm
t =
-
![r_(1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/73sx6n4sgclmy5rlr734lwlfyb431s78yq.png)
t = 170.36 - 150
t = 20.36