Answer:
μ = 0.436
Step-by-step explanation:
Given:
Change in diameter, ΔD = 7 × 10⁻³ mm
Original diameter, D = 11.2 mm = 11.2 × 10⁻³ m
Applied force, P = 14100 N
Cross-section area of the specimen, A =
=
![(\pi)/(4)(11.2* 10^(-3))^2](https://img.qammunity.org/2020/formulas/physics/college/kcf53oaz6nkd5n881yuxzlgmvjk8y01m3l.png)
Now,
elongation due to tensile force is given as:
![\delta = (PL)/(AE)](https://img.qammunity.org/2020/formulas/physics/college/z853uf58gt9oor2x30l4hgrxojhbxaon6x.png)
or
![(\delta)/(L) = (P)/(AE)](https://img.qammunity.org/2020/formulas/physics/college/pmcry4slpavyprfao20gssez8uadp8as8i.png)
on substituting the values, we get
![(\delta)/(L) = (14100)/((\pi)/(4)(11.2* 10^(-3))^2*100* 10^9)](https://img.qammunity.org/2020/formulas/physics/college/dhy6im5pn6n7o7dj5pfrpz9ofnpm2c30jt.png)
or
![(\delta)/(L) = 0.00143=\epsilon_x](https://img.qammunity.org/2020/formulas/physics/college/800clz8zvms0w2d6zmci0n13nv93rtbsql.png)
where,
is the strain in the direction of force
Now,
![\epsilon_z=(\Delta D)/(D)=(7* 10^(-3))/(11.2)=0.000625](https://img.qammunity.org/2020/formulas/physics/college/8t2fwgk4q3zv1ozguestn5005yrkat75j1.png)
now, the poisson ratio, μ is given as:
![\mu=(\epsilon_z)/(\epsilon_x)](https://img.qammunity.org/2020/formulas/physics/college/1ldw9hviqq76xfn7ph7asv9d88dl6k00dk.png)
on substituting the values we get,
![\mu=(0.000625)/(0.00143)=0.436](https://img.qammunity.org/2020/formulas/physics/college/fgp0jtmyny4vy3i2ln5x18x8qcqqf5larq.png)