Answer:
stress = 366515913.6 Pa
Step-by-step explanation:
given data:
density of alloy = 8.5 g/cm^3 = 8500 kg/m^3
length turbine blade = 10 cm = 0.1 m
cross sectional area = 15 cm^2 = 15*10^-4 m^2
disc radius = 70 cm = 0.7 m
angular velocity = 7500 rpm = 7500/60 rotation per sec
we know that
stress = force/ area
force = m*a
where a_{c} is centripetal acceleration =
![a_(c) =r*\omega ^(2)= r*(2*\pi*\omega)^(2)](https://img.qammunity.org/2020/formulas/physics/college/p9vizh4c57mxsddpy2ooeqf4a81drqghhz.png)
=
![0.70*(2*\pi*(7500)/(60))^(2)](https://img.qammunity.org/2020/formulas/physics/college/cl93bbbda79pv2s1biqcaugvzeull3bi66.png)
= 431795.19 m/s^2
mass =
![\rho* V](https://img.qammunity.org/2020/formulas/physics/college/ia3i6h7xa6t9qeeg1phu0of4tpuojfn5xj.png)
Volume = area* length = 15*10^{-5} m^3
![mass = m = \rho*V = 8500*15*10^(-5) kg](https://img.qammunity.org/2020/formulas/physics/college/jspsrgodztfcdhk76es9khfdkyo3t2gl9h.png)
force = m*a_{c}
![=8500*15*10^(-5)*0.70*(2*\pi*(7500)/(60))^(2)](https://img.qammunity.org/2020/formulas/physics/college/ook5k1t2ot58kkl0uaopr1ubbe3zzsw6gs.png)
force = 549773.87 N
stress = force/ area
=
![(549773.87)/(15*10^(-5))](https://img.qammunity.org/2020/formulas/physics/college/2dhmk1gd6p55idutz1awl207enasjpzysq.png)
stress = 366515913.6 Pa