145k views
2 votes
Technetium (Tc; Z = 43) is a synthetic element used as a radioactive tracer in medical studies. A Tc atom emits a beta particle (electron) with a kinetic energy (Ek) of 4.71 × 10−15 J. What is the de Broglie wavelength of this electron (Ek = mu2/2)?

1 Answer

4 votes

Answer : The de-Broglie wavelength of this electron,
0.101\AA

Explanation :

The formula used for kinetic energy is,


K.E=(1)/(2)mv^2 ..........(1)

According to de-Broglie, the expression for wavelength is,


\lambda=(h)/(mv)

or,


v=(h)/(m\lambda) ...........(2)

Now put the equation (2) in equation (1), we get:


\lambda=(h)/(√(2* m* K.E)) ...........(3)

where,


\lambda = wavelength = ?

h = Planck's constant =
6.626* 10^(-34)Js

m = mass of electron =
9.11* 10^(-31)Kg

K.E = kinetic energy =
4.71* 10^(-15)J

Now put all the given values in the above formula (3), we get:


\lambda=\frac{6.626* 10^(-34)Js}{\sqrt{2* 9.11* 10^(-31)Kg* 4.71* 10^(-15)J}}


\lambda=1.0115* 10^(-11)m=0.101\AA

conversion used :
(1\AA=10^(-10)m)

Therefore, the de-Broglie wavelength of this electron,
0.101\AA

User PhilDulac
by
5.8k points