Answer : The de-Broglie wavelength of this electron,
![0.101\AA](https://img.qammunity.org/2020/formulas/physics/college/re1zwphk7cxkbh8tcyh6ijt9hplshjtwhs.png)
Explanation :
The formula used for kinetic energy is,
..........(1)
According to de-Broglie, the expression for wavelength is,
![\lambda=(h)/(mv)](https://img.qammunity.org/2020/formulas/physics/high-school/2ux9ol38f2uin1tqqqpm91aapsytpn91ak.png)
or,
...........(2)
Now put the equation (2) in equation (1), we get:
...........(3)
where,
= wavelength = ?
h = Planck's constant =
![6.626* 10^(-34)Js](https://img.qammunity.org/2020/formulas/physics/college/b18kmhhpr3ehzalofa0yct1hdtfjbym27x.png)
m = mass of electron =
![9.11* 10^(-31)Kg](https://img.qammunity.org/2020/formulas/physics/college/r6a3jv4v7qlodlp18t4yve331pm2k5q23q.png)
K.E = kinetic energy =
![4.71* 10^(-15)J](https://img.qammunity.org/2020/formulas/physics/college/o89ht4a1wstm73teww45pxbty2j2iztuwh.png)
Now put all the given values in the above formula (3), we get:
![\lambda=\frac{6.626* 10^(-34)Js}{\sqrt{2* 9.11* 10^(-31)Kg* 4.71* 10^(-15)J}}](https://img.qammunity.org/2020/formulas/physics/college/8kew8mwhst6l06j6jz8vzvphdszv2dst58.png)
![\lambda=1.0115* 10^(-11)m=0.101\AA](https://img.qammunity.org/2020/formulas/physics/college/ng9prdmoq7vwbg4du0do0jfygczis8lmwy.png)
conversion used :
![(1\AA=10^(-10)m)](https://img.qammunity.org/2020/formulas/physics/college/daqq6dzwbraoprchpva6jq9d8uxyc1ped5.png)
Therefore, the de-Broglie wavelength of this electron,
![0.101\AA](https://img.qammunity.org/2020/formulas/physics/college/re1zwphk7cxkbh8tcyh6ijt9hplshjtwhs.png)