Answer:
A. number of decayed atoms = 73.197
Explanation:
In order to find the answer we need to use the radioactive decay equation:
where:
N0=initial radioactive atoms
t=time
k=radioactive decay constant
In our case, when t=0 we have 1,000,000 atoms, so:
![1,000,000=N0*e^(k*0)](https://img.qammunity.org/2020/formulas/mathematics/college/6ya8tlvxpcjzcp0l5uzrdfrb18r5q6ji6z.png)
![1,000,000=N0](https://img.qammunity.org/2020/formulas/mathematics/college/p1ob3u99kjvgzqbox8hwpi9e4uo72thdsr.png)
Now we need to find 'k'. Using the provied information that after 365 days we have 973,635 radioactive atoms, we have:
![973,635=1,000,000*e^(k*365)](https://img.qammunity.org/2020/formulas/mathematics/college/ata4i4g63rjz27k6vdf1zer0lzw4j8os1x.png)
![ln(973,635/1,000,000)/365=k](https://img.qammunity.org/2020/formulas/mathematics/college/rbltka8b6lh2x468el2fsvtfbgx7rc7xrw.png)
![-0.0000732=k](https://img.qammunity.org/2020/formulas/mathematics/college/fh3x4nf59hamz43sztvp7avcpmmr0he3s0.png)
A. atoms decayed in a day:
![N(t)=1,000,000*e^(-0.0000732t)](https://img.qammunity.org/2020/formulas/mathematics/college/rm79gc9g2a55uxa4h058ng6j3dtnrr0h8b.png)
![N(1)=1,000,000*e^(-0.0000732*1)](https://img.qammunity.org/2020/formulas/mathematics/college/gdscpiuqet148xpkqo7qxj4jfvzn9nlmga.png)
![N(1)= 999,926.803](https://img.qammunity.org/2020/formulas/mathematics/college/eh8tjio2w5r4e6l5ee2wwmsy281cwkc6qc.png)
Number of atoms decayed in a day = 1,000,000 - 999,926.803 = 73.197
B. Because 'k' represents the probability of decay, then the probability that on a given day 51 radioactive atoms decayed is k=0.0000732.