124k views
4 votes
Please solve the attachment below

Please solve the attachment below-example-1
User Xrisk
by
8.3k points

1 Answer

4 votes

Answer:

Part 1)
x=(+/-)(1)/(√(11)) ----->
(x,(√(110))/(11))

Part 2)
x=(+/-)(6√(2))/(11) ---->
(x,(7)/(11))

Part 3)
x=(+/-)(4√(6))/(11) ---->
(x,(5)/(11))

Part 4)
x=(+/-)(2√(10))/(11) --->
(x,(9)/(11))

Explanation:

we know that

In the unit circle

The coordinates of a point have the following rule


x^(2) +y^(2) =r^(2)

where

(x,y) are the coordinates of the point a r is the radius

but remember that in a unit circle the radius is equal to 1

so


x^(2) +y^(2) =1


x^(2)=1-y^(2)


x=(+/-)\sqrt{1-y^(2)}

Find the x-coordinate of each case

Part 1) we have the point


(x,(√(110))/(11))

so

The y-coordinate is


y=(√(110))/(11)

Find the value of the x-coordinate

substitute


x=(+/-)\sqrt{1-y^(2)}


x=(+/-)\sqrt{1-((√(110))/(11))^(2)


x=(+/-)\sqrt{1-((110)/(121))


x=(+/-)\sqrt{(11)/(121))


x=(+/-)(√(11))/(11)


x=(+/-)(1)/(√(11))

Part 2) we have the point


(x,(7)/(11))

so

The y-coordinate is


y=(7)/(11)

Find the value of the x-coordinate

substitute


x=(+/-)\sqrt{1-y^(2)}


x=(+/-)\sqrt{1-((7)/(11))^(2)


x=(+/-)\sqrt{1-((49)/(121))


x=(+/-)\sqrt{(72)/(121))


x=(+/-)(6√(2))/(11)

Part 3) we have the point


(x,(5)/(11))

so

The y-coordinate is


y=(5)/(11)

Find the value of the x-coordinate

substitute


x=(+/-)\sqrt{1-y^(2)}


x=(+/-)\sqrt{1-((5)/(11))^(2)


x=(+/-)\sqrt{1-((25)/(121))


x=(+/-)\sqrt{(96)/(121))


x=(+/-)(4√(6))/(11)

Part 4) we have the point


(x,(9)/(11))

so

The y-coordinate is


y=(9)/(11)

Find the value of the x-coordinate

substitute


x=(+/-)\sqrt{1-y^(2)}


x=(+/-)\sqrt{1-((9)/(11))^(2)


x=(+/-)\sqrt{1-((81)/(121))


x=(+/-)\sqrt{(40)/(121))


x=(+/-)(2√(10))/(11)

User Jarrod Carlson
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories