124k views
4 votes
Please solve the attachment below

Please solve the attachment below-example-1
User Xrisk
by
4.7k points

1 Answer

4 votes

Answer:

Part 1)
x=(+/-)(1)/(√(11)) ----->
(x,(√(110))/(11))

Part 2)
x=(+/-)(6√(2))/(11) ---->
(x,(7)/(11))

Part 3)
x=(+/-)(4√(6))/(11) ---->
(x,(5)/(11))

Part 4)
x=(+/-)(2√(10))/(11) --->
(x,(9)/(11))

Explanation:

we know that

In the unit circle

The coordinates of a point have the following rule


x^(2) +y^(2) =r^(2)

where

(x,y) are the coordinates of the point a r is the radius

but remember that in a unit circle the radius is equal to 1

so


x^(2) +y^(2) =1


x^(2)=1-y^(2)


x=(+/-)\sqrt{1-y^(2)}

Find the x-coordinate of each case

Part 1) we have the point


(x,(√(110))/(11))

so

The y-coordinate is


y=(√(110))/(11)

Find the value of the x-coordinate

substitute


x=(+/-)\sqrt{1-y^(2)}


x=(+/-)\sqrt{1-((√(110))/(11))^(2)


x=(+/-)\sqrt{1-((110)/(121))


x=(+/-)\sqrt{(11)/(121))


x=(+/-)(√(11))/(11)


x=(+/-)(1)/(√(11))

Part 2) we have the point


(x,(7)/(11))

so

The y-coordinate is


y=(7)/(11)

Find the value of the x-coordinate

substitute


x=(+/-)\sqrt{1-y^(2)}


x=(+/-)\sqrt{1-((7)/(11))^(2)


x=(+/-)\sqrt{1-((49)/(121))


x=(+/-)\sqrt{(72)/(121))


x=(+/-)(6√(2))/(11)

Part 3) we have the point


(x,(5)/(11))

so

The y-coordinate is


y=(5)/(11)

Find the value of the x-coordinate

substitute


x=(+/-)\sqrt{1-y^(2)}


x=(+/-)\sqrt{1-((5)/(11))^(2)


x=(+/-)\sqrt{1-((25)/(121))


x=(+/-)\sqrt{(96)/(121))


x=(+/-)(4√(6))/(11)

Part 4) we have the point


(x,(9)/(11))

so

The y-coordinate is


y=(9)/(11)

Find the value of the x-coordinate

substitute


x=(+/-)\sqrt{1-y^(2)}


x=(+/-)\sqrt{1-((9)/(11))^(2)


x=(+/-)\sqrt{1-((81)/(121))


x=(+/-)\sqrt{(40)/(121))


x=(+/-)(2√(10))/(11)

User Jarrod Carlson
by
4.6k points