Answer:
23.3808 kW
20.7088 kW
Step-by-step explanation:
ρ = Density of oil = 800 kg/m³
P₁ = Initial Pressure = 0.6 bar
P₂ = Final Pressure = 1.4 bar
Q = Volumetric flow rate = 0.2 m³/s
A₁ = Area of inlet = 0.06 m²
A₂ = Area of outlet = 0.03 m²
Velocity through inlet = V₁ = Q/A₁ = 0.2/0.06 = 3.33 m/s
Velocity through outlet = V₂ = Q/A₂ = 0.2/0.03 = 6.67 m/s
Height between inlet and outlet = z₂ - z₁ = 3m
Temperature to remains constant and neglecting any heat transfer we use Bernoulli's equation
![\frac {P_1}{\rho g}+(V_1^2)/(2g)+z_1+h=\frac {P_2}{\rho g}+(V_2^2)/(2g)+z_2\\\Rightarrow h=(P_2-P_1)/(\rho g)+(V_2^2-V_1^2)/(2g)+z_2-z_1\\\Rightarrow h=((1.4-0.6)* 10^5)/(800* 9.81)+(6.67_2^2-3.33^2)/(2* 9.81)+3\\\Rightarrow h=14.896\ m](https://img.qammunity.org/2020/formulas/engineering/college/n74cku9l0jqfzqruxkpcagb947d4coz2gu.png)
Work done by pump
![W_(p)=\rho gQh\\\Rightarrow W_(p)=800* 9.81* 0.2* 14.896\\\Rightarrow W_(p)=23380.8\ W](https://img.qammunity.org/2020/formulas/engineering/college/72smly7li78ry776k6y6kuhjiyhp1oexgp.png)
∴ Power input to the pump 23.3808 kW
Now neglecting kinetic energy
![h=(P_2-P_1)/(\rho g)+z_2-z_1\\\Righarrow h=((1.4-0.6)* 10^5)/(800* 9.81)+3\\\Righarrow h=13.19\ m\\](https://img.qammunity.org/2020/formulas/engineering/college/92k99wm28mwvjrkas3vvvifogv719u953h.png)
Work done by pump
![W_(p)=\rho gQh\\\Rightarrow W_(p)=800* 9.81* 0.2* 13.193\\\Rightarrow W_(p)=20708.8\ W](https://img.qammunity.org/2020/formulas/engineering/college/d7wo0x0mmo4tnc5tudvznulkorvbi8bekm.png)
∴ Power input to the pump 20.7088 kW