220k views
5 votes
Determine whether the vectors (2, 3, l), (2, -5, -3), (-3, 8, -5) are linearly dependent or linear independent. If the vectors are linearly dependent, express one as a linear combination of the others. (Solutions of homogeneous differential equations form a vector space: it is necessary to confirm whether given functions/vectors are linearly dependent or linearly independent, chapter 4).

User Desunit
by
8.3k points

1 Answer

4 votes

Answer:

So the vectors are linearly independent.

Explanation:

So if they are linearly independent then the following scalars in will have the condition a=b=c=0:

a(2,3,1)+b(2,-5,-3)+c(-3,8,-5)=(0,0,0).

We have three equations:

2a+2b-3c=0

3a-5b+8c=0

1a-3b-5c=0

Multiply last equation by -2:

2a+2b-3c=0

3a-5b+8c=0

-2a+6b+10c=0

Add equation 1 and 3:

0a+8b+7c=0

3a-5b+8c=0

-2a+6b+10c=0

Divide equation 3 by 2:

0a+8b+7c=0

3a-5b+8c=0

-a+3b+2c=0

Multiply equation 3 by 3:

0a+8b+7c=0

3a-5b+8c=0

-3a+9b+6c=0

Add equation 2 and 3:

0a+8b+7c=0

3a-5b+8c=0

0a+4b+13c=0

Multiply equation 3 by -2:

0a+8b+7c=0

3a-5b+8c=0

0a-8b-26c=0

Add equation 1 and 3:

0a+0b-19c=0

3a-5b+8c=0

0a-8b-26c=0

The first equation tells us -19c=0 which implies c=0.

If c=0 we have from the second and third equation:

3a-5b=0

0a-8b=0

0a-8b=0

0-8b=0

-8b=0 implies b=0

We have b=0 and c=0.

So what is a?

3a-5b=0 where b=0

3a-5(0)=0

3a-0=0

3a=0 implies a=0

So we have a=b=c=0.

So the vectors are linearly independent.

User Martin Wedvich
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.