170k views
3 votes
Let f(x) = x^2-6 and g(x) =10x . Find (g ° f)(x)

User Asn
by
8.2k points

2 Answers

2 votes

Answer:

10x^2-60

Explanation:

(G o F)(x) is the same as g(f(x)). We know that f(x)=x^2-6. So now you have to find g(x^2-6). To solve for that plug in x^2-6 in for x in the original equation for g(x). You get 10(x^2-6) or 10x^2-60

User Chirag Vidani
by
8.5k points
7 votes

Answer:


(g \circ f)(x)=10x^2-60

Answer:
10x^2-60

Explanation:


(g \circ f)(x)=g(f(x))

Replace
f(x) with
x^2-6.

This gives us:


(g \circ f)(x)=g(f(x))


(g \circ f)(x)=g(x^2-6)

This means to replace the old input variable with new input,
(x^2-6).

Let's do that:


(g \circ f)(x)=10(x^2-6)

They probably want you to distribute:


(g \circ f)(x)=10x^2-60

User BAK
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories