Answer:
a). d = 13 mm
b). d = 16 mm
Step-by-step explanation:
a). Given :
Force = 20000 N
Maximum stress, σ = 150 N/
![mm^(2)](https://img.qammunity.org/2020/formulas/engineering/college/o2wu8rtnzvzu9vnxczb1hzwsb5tcu2w23h.png)
Therefore, we know that that
σ =
![(Force)/(area)](https://img.qammunity.org/2020/formulas/engineering/college/q0vacl7rw2yeohabxbk02gb2k0erp9zwxi.png)
150 = \frac{Force}{\frac{pi}{4}\times d^{2}}
150 = \frac{20000}{\frac{pi}{4}\times d^{2}}
= 169.76
d = 13.02 mm
d
13 mm
b). Given :
Strain, ε = 0.0005
Young Modulus, E = 207 GPa
= 207
![*](https://img.qammunity.org/2020/formulas/mathematics/high-school/hu73360gslc9gonzumczajyt7lwq5sfgwd.png)
MPa
Therefore we know that, Stress σ = E
ε
= 207
![*](https://img.qammunity.org/2020/formulas/mathematics/high-school/hu73360gslc9gonzumczajyt7lwq5sfgwd.png)
![10^(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/egz2p0s75pc4luuj9qvswzbtzpk5k6mf02.png)
0.0005
= 103.5 N/
![mm^(2)](https://img.qammunity.org/2020/formulas/engineering/college/o2wu8rtnzvzu9vnxczb1hzwsb5tcu2w23h.png)
We know that
σ =
![(Force)/(Area)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z4jb8axlkir34yrd7jotc9dlclvncdv1re.png)
103.5 =
![(Force)/((pi)/(4)* d^(2))](https://img.qammunity.org/2020/formulas/engineering/college/zawvg7moc2pan5ime05mv2kdvihfkrru7i.png)
= 246.27
d = 15.69 mm
d
16 mm