First,
We are dealing with parabola since the equation has a form of,
![y=ax^2+bx+c](https://img.qammunity.org/2020/formulas/mathematics/middle-school/681jf4lsjwxd9lmjd27bh82m6tps71a0gl.png)
Here the vertex of an up - down facing parabola has a form of,
![x_v=-(b)/(2a)](https://img.qammunity.org/2020/formulas/mathematics/college/bps9knk2uu4gre50k2xxjlay4zhs5rpbif.png)
The parameters we have are,
![a=-5,b=-10, c=6](https://img.qammunity.org/2020/formulas/mathematics/college/4vn397rfssnzw4ss0ovksnnfzeg1or4z4k.png)
Plug them in vertex formula,
![x_v=-(-10)/(2(-5))=-1](https://img.qammunity.org/2020/formulas/mathematics/college/d4i3fbuo0xp0p08edi9r953q5hk6bpaioy.png)
Plug in the
into the equation,
![y_v=-5(-1)^2-10(-1)+6=11](https://img.qammunity.org/2020/formulas/mathematics/college/oyw0ttcvr7a2gw2ipj6mwvyiho9juiwsf9.png)
We now got a point parabola vertex with coordinates,
![(x_v, y_v)\Longrightarrow(-1,11)](https://img.qammunity.org/2020/formulas/mathematics/college/d3662f5cw1sumzlwdty3qwzcloi3qo0x7n.png)
From here we emerge two rules:
- If
then vertex is max value - If
then vertex is min value
So our vertex is minimum value since,
![a=-5\Longleftrightarrow a<0](https://img.qammunity.org/2020/formulas/mathematics/college/35e8lcxls0xjrujwn5xe1z41tes55db111.png)
Hope this helps.
r3t40