Answer:
The magnitude of the truck's velocity relative to the ground is 35.82 m/s.
Step-by-step explanation:
Given that,
Velocity of car relative to ground = 15.3 m/s
Velocity of truck relative to car = 22.5 m/s
We need to calculate the magnitude of the truck's velocity relative to the ground
We need to calculate the x component of the velocity
![v_(x)=22.5\cos\theta](https://img.qammunity.org/2020/formulas/physics/college/kbwhetgq3mhpws4hab6u23xjc2wlyqn2fu.png)
![v_(x)=22.5\cos52^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/zrasz6ztt5wkoueqbiuk8ntsivl4cfgeqb.png)
![v_(x)=13.852\ m/s](https://img.qammunity.org/2020/formulas/physics/college/s9kc11kc6jawj8t6iartmc4tn6y7s1bs1i.png)
We need to calculate the y component of the velocity
![v_(y)=15.3+22.5\sin\theta](https://img.qammunity.org/2020/formulas/physics/college/7ncpz0whnmehbpy8fk0o4e2yt06ng38p4a.png)
![v_(y)=15.3+22.5\sin52^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/csdi008h092igw0gb32girz6u7ba2jlkbh.png)
![v_(y)=33.030\ m/s](https://img.qammunity.org/2020/formulas/physics/college/vi7y2gw1l3kpi1h0dhpx5urbiwkcburgqf.png)
Using Pythagorean theorem
![|v|=\sqrt{v_(x)^2+v_(y)^2}](https://img.qammunity.org/2020/formulas/physics/college/er13t9488ikuicfs2zowar3l232f8s18k1.png)
![|v|=√((13.852)^2+(33.030)^2)](https://img.qammunity.org/2020/formulas/physics/college/lbxa2zmv4j8slhrktbj1kb7ern0vsk275s.png)
![|v|=35.82\ m/s](https://img.qammunity.org/2020/formulas/physics/college/tcgqc1yogi6eyhcm3gxawjnwml4z4ughok.png)
Hence, The magnitude of the truck's velocity relative to the ground is 35.82 m/s.