23.3k views
3 votes
PLZ HELP
Pre-calculus

PLZ HELP Pre-calculus-example-1

2 Answers

6 votes

Answer:

3/4 goes with
\log_2(8^(1)/(4))

-4 goes with
\log_3((1)/(81))

-6 goes with
-3\log_5(25)

1/3 goes with
\log_6(6^(1)/(3))

Explanation:


\log_6(6^(1)/(3))=(1)/(3)\log_6(6)=(1)/(3)\cdot 1=(1)/(3)


\log_2(64)=6 \text{ since } 2^6=64


-3\log_5(25)=-3(2)=-6 \text{ since } 5^2=25


\log_2(8^(1)/(4))=(1)/(4)\log_2(8)=(1)/(4)\log_2(2^3)=(1)/(4)\cdot (3)\log_2(2)=(1)/(4) \cdot 3 \cdot 1=(3)/(4)


\log_3((1)/(81))=\log_3((1)/(3^4))=\log_3(3^(-4))=-4\log_3(3)=-4(1)=-4

Here are few rules I used:


\log_a(b)=x \text{ means } a^x=b


\log_a(a)=1


\log_a(b^r)=r \log_a(b)

User BreyndotEchse
by
8.2k points
3 votes


\bf \textit{Logarithm Cancellation Rules} \\\\ log_a a^x = x\qquad \qquad a^(log_a x)=x \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \log_6(\sqrt[3]{6})\implies \log_6(6^{(1)/(3)})\implies \cfrac{1}{3} \\\\[-0.35em] ~\dotfill\\\\ \log_2(64)\implies \log_2(2^6)\implies 6 \\\\[-0.35em] ~\dotfill\\\\ -3\log_5(25)\implies -3\log_5(5^2)\implies -3(2)\implies -6 \\\\[-0.35em] ~\dotfill


\bf \log_2(\sqrt[4]{8})\implies \log_2(\sqrt[4]{2^3})\implies \log_2(2^{(3)/(4)})\implies \cfrac{3}{4} \\\\[-0.35em] ~\dotfill\\\\ \log_3\left( (1)/(81) \right)\implies \log_3\left( (1)/(3^4) \right)\implies \log_3(3^(-4))\implies -4

User Chris Kooken
by
7.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories