Answer:
![AC=4.3\ in](https://img.qammunity.org/2020/formulas/mathematics/high-school/jxy68w4rfuj2393utgdlnadmhu1tddclff.png)
Explanation:
see the attached figure to better understand the problem
we know that
The triangle AOC is an isosceles triangle
OA=OC=5/2=2.5 in -----> the radius of the circle
∠AOC=180°-60°=120°
∠CAO=∠ACO=120°/2=60°
Applying the law of cosines find the length of the chord AC
![AC^(2)=OA^(2)+OC^(2)-2(OA)(OC)cos(120\°)](https://img.qammunity.org/2020/formulas/mathematics/high-school/j63rkm9k4a2o99jla6pz7t3igvcckqv2lo.png)
substitute
![AC^(2)=2.5^(2)+2.5^(2)-2(2.5)(2.5)cos(120\°)](https://img.qammunity.org/2020/formulas/mathematics/high-school/9wrpuk57bkp8lepekz7vllgygvy2rgei9x.png)
![AC^(2)=18.75](https://img.qammunity.org/2020/formulas/mathematics/high-school/n86nfwiklr8k8rfv5m2oury05z82gbiw85.png)
![AC=4.3\ in](https://img.qammunity.org/2020/formulas/mathematics/high-school/jxy68w4rfuj2393utgdlnadmhu1tddclff.png)