Answer:
The length of the ladder is 10 m.
Explanation:
Let x shows the distance of the top of ladder from the bottom of base of the wall, y shows the distance of the bottom of ladder from the base of the wall and l is the length of the ladder,
Given,
![(dx)/(dt)=-0.675\text{ m/s}](https://img.qammunity.org/2020/formulas/mathematics/college/w3smxk60r1n7jjvd3g2xsz5ksjhz05oiax.png)
y = 6 m,
Since, the wall is assumed perpendicular to the ground,
By the pythagoras theorem,
![l^2=x^2+y^2](https://img.qammunity.org/2020/formulas/mathematics/college/bj3t1un909abksnaaxw7agk8s8ucb5vb6y.png)
Differentiating with respect to t ( time ),
( the length of wall would be constant )
By substituting the value,
![0=2x(-0.675)+2(6)(0.9)](https://img.qammunity.org/2020/formulas/mathematics/college/hjzs4lk980cvw9bhxerix6leia3ei6ajc3.png)
![0=-1.35x+10.8](https://img.qammunity.org/2020/formulas/mathematics/college/udrc3hqgzva97obukqvaf8gjsa8gw9vd3q.png)
![\implies x=(10.8)/(1.35)=8](https://img.qammunity.org/2020/formulas/mathematics/college/mfcc6rv16usme11ka35q4pn146zimssi66.png)
Hence, the length of the ladder is,
![L=√(x^2+y^2)=√(8^2+6^2)=√(64+36)=√(100)=10\text{ m}](https://img.qammunity.org/2020/formulas/mathematics/college/6odq82tox3g16baxdysxityut23tj0mni5.png)