227k views
3 votes
Find the? inverse, if it? exists, for the given matrix.

[4 3]

[3 6]

1 Answer

5 votes

Answer:

Therefore, the inverse of given matrix is


=\begin{pmatrix}(2)/(5)&-(1)/(5)\\ -(1)/(5)&(4)/(15)\end{pmatrix}

Explanation:

The inverse of a square matrix
A is
A^(-1) such that


A A^(-1)=I where I is the identity matrix.

Consider,
A = \left[\begin{array}{ccc}4&3\\3&6\end{array}\right]


\mathrm{Matrix\:can\:only\:be\:inverted\:if\:it\:is\:non-singular,\:that\:is:}


\det \begin{pmatrix}4&3 \\3&6\end{pmatrix}\\e 0


\mathrm{Find\:2x2\:matrix\:inverse\:according\:to\:the\:formula}:\quad \begin{pmatrix}a\:&\:b\:\\ c\:&\:d\:\end{pmatrix}^(-1)=\frac{1}{\det \begin{pmatrix}a\:&\:b\:\\ c\:&\:d\:\end{pmatrix}}\begin{pmatrix}d\:&\:-b\:\\ -c\:&\:a\:\end{pmatrix}


=\frac{1}{\det \begin{pmatrix}4&3\\ 3&6\end{pmatrix}}\begin{pmatrix}6&-3\\ -3&4\end{pmatrix}


\mathrm{Find\:the\:matrix\:determinant\:according\:to\:formula}:\quad \det \begin{pmatrix}a\:&\:b\:\\ c\:&\:d\:\end{pmatrix}\:=\:ad-bc


4\cdot \:6-3\cdot \:3=15


=(1)/(15)\begin{pmatrix}6&-3\\ -3&4\end{pmatrix}


=\begin{pmatrix}(2)/(5)&-(1)/(5)\\ -(1)/(5)&(4)/(15)\end{pmatrix}

Therefore, the inverse of given matrix is


=\begin{pmatrix}(2)/(5)&-(1)/(5)\\ -(1)/(5)&(4)/(15)\end{pmatrix}

User Lqc
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories