Answer:
The function which is an exponential decay function is:
![f(x)=(3)/(2)((8)/(7))^(-x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rgbej0cur6bveayqsucfh2rk5jkndx24we.png)
Explanation:
We know that an exponential function is in the form of:
![f(x)=ab^x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/943dw4whp4soc4g98riownjmda4jg3k8ke.png)
where a>0 and if 0<b<1 then the function is a exponential decay function.
and if b>1 then the function is a exponential growth function.
a)
![f(x)=(3)/(4)((7)/(4))^x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g0up42iqdgwiz8wp6k12ko5zku82itqt1v.png)
Here
![b=(7)/(4)>1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8m8bzf17dbfmaj4k2avrclx4aijogdxiy2.png)
Hence, the function is a exponential growth function.
b)
![f(x)=(2)/(3)((4)/(5))^(-x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/realw8wccdnearor5p39i8hyor2ctpddsi.png)
We know that:
![a^(-x)=((1)/(a))^x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9u7ntxf7ldrqpm2nv8n5b87hg6nj5399ol.png)
Hence, we have the function f(x) as:
![f(x)=(2)/(3)((5)/(4))^x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tsazxn2qxo23h7alfu1ps68gpv1lakc3my.png)
Here
![b=(5)/(4)>1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2wnbg1fhwac6s7unfavy79l33d5ty80qok.png)
Hence, the function is a exponential growth function.
c)
![f(x)=(3)/(2)((8)/(7))^(-x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rgbej0cur6bveayqsucfh2rk5jkndx24we.png)
We know that:
![a^(-x)=((1)/(a))^x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9u7ntxf7ldrqpm2nv8n5b87hg6nj5399ol.png)
Hence, we have the function f(x) as:
![f(x)=(3)/(2)((7)/(8))^x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z762q14vyisfhqfq0xeagvzjmx7upaeahs.png)
Here
![b=(7)/(8)<1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/puyxys5ears3i55tb6zgm5b4aw0r44q5no.png)
Hence, the function is a exponential decay function.
d)
![f(x)=(1)/(3)((9)/(2))^x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/brni7hmf4x8otbjtfo3ldmay78vtexdv8u.png)
Here
![b=(9)/(2)>1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/df2swe8w6yvrawi0sietx2addviifr3rcp.png)
Hence, the function is a exponential growth function.