114k views
2 votes
If tan^3(theta) -1/tan(theta)-1 - sec^2(theta) + 1 = 0 find cot(theta)

User EDToaster
by
6.2k points

2 Answers

6 votes


\tan^3\theta-\frac1{\tan\theta-1}-\sec^2\theta+1=0

Recall that
\tan^2\theta+1=\sec^2\theta, so we can write everything in terms of
\tan\theta:


\tan^3\theta-\frac1{\tan\theta-1}-\tan^2\theta=0

Let
x=\tan\theta, so that


x^3-\frac1{x-1}-x^2=0

With some rewriting we get


x^3-x^2-\frac1{x-1}=0


x^2(x-1)-\frac1{x-1}=0


(x^2(x-1)^2-1)/(x-1)=0

Clearly we cannot have
x=1, or
\tan\theta=1.

The numerator determines when the expression on the left reduces to 0:


x^2(x-1)^2-1=0


x^2(x-1)^2=1


√(x^2(x-1)^2)=\sqrt1


|x(x-1)|=1


x(x-1)=1\text{ or }x(x-1)=-1

Completing the square gives


x(x-1)=x^2-x=x^2-x+\frac14-\frac14=\left(x-\frac12\right)^2-\frac14

so that


\left(x-\frac12\right)^2=\frac54\text{ or }\left(x-\frac12\right)^2=-\frac34

The second equation gives no real-valued solutions because squaring any real number gives a positive real number. (I'm assuming we don't care about complex solutions.) So we're left with only


\left(x-\frac12\right)^2=\frac54


√(\left(x-\frac12\right)^2)=√(\frac54)


\left|x-\frac12\right|=\frac{\sqrt5}2

which again gives two cases,


x-\frac12=\frac{\sqrt5}2\text{ or }x-\frac12=-\frac{\sqrt5}2


x=\frac{1+\sqrt5}2\text{ or }x=\frac{1-\sqrt5}2

Then when
x=\tan\theta, we can find
\cot\theta by taking the reciprocal, so we get


\boxed{\cot\theta=\frac2{1+\sqrt5}\text{ or }\cot\theta=\frac2{1-\sqrt5}}

User StephQ
by
6.0k points
2 votes

Answer: A. -1

Explanation:

Edg 2020

User KIC
by
5.9k points